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Abstract

This article explores a link between stylized features and estimation accuracy, in the context
of estimating the transition probabilities in regime switching models. We provide an example
where estimators that are constructed primarily to capture stylized features, need not perform
better than the usual estimators. We show this for finite samples, using both simulations and
analytical comparisons.
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1 Introduction

Many studies have found significant autocovariances in the squared values of economic time series.
Timmermann [2000] attributes the success of ARCH models to the fact that these models exhibit
such autocovariance patterns. They show that the class of regime switching models also exhibits
autocovariances in the squared values. The volatility clustering produced by these models is usually
linked to these non-zero autocovariances.

Due to this link, one can use the sample autocovariances of the squared values to construct
estimators, for estimating the parameters of a regime switching model, hoping to better capture
volatility clustering effects. We will denote them as AIS estimators (estimators based on Autoco-
variances In the Squares of a time series). The typical justification is: by using such estimators,
one can get closer in knowing the true data generating process (for example, Henriksen [2011]).
However the question remains as to whether such estimators that are designed to capture stylized
features, should always be preferred, whenever they are available. This is a more general question,
which can be raised even outside the regime switching context.

Also this is a relatively difficult question, since in most situations, we cannot establish a complete
superiority of one estimator over the other, in terms of estimation accuracy. Here we answer the
question in negative by providing a counterexample. We show for the regime switching model, the
AIS estimators could be inferior to a simpler set of estimators. We compare the AIS estimators
with the estimators based on sample autocovariances in the levels of the series (which we denote
as AIL estimators). We find that either of these estimators can be used to estimate the transition
probabilities in a regime switching model.

This provides us a warning, in situations where one has to choose between a standard estimator
(could be moments, least squares or maximum likelihood) and an estimator particularly designed
to capture stylized features. In a related article, Kim and White [2004] provides us another warning
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related to the over dependence on standard estimators, to detect the presence or absence of certain
stylized features.

One of the many characteristics of “good” estimators is admissibility, besides unbiasedness,
consistency etc. (Lehmann and Casella [1998]). Typically inadmissible estimators are not preferred,
since there is a better competing estimator available. In this article, we show that AIS estimator
turns out to be inadmissible, under a special case.

Finally, capturing of stylized features can, and should, motivate construction of newer estima-
tors. However, as we show in this article, this cannot be the sole motivation for recommending their
use. One still needs to compare them with existing estimators to ensure their superior performance.
We use the example of AIS estimators to only highlight this fact and we do not attempt to compare
across methodologies like maximum likelihood, method of moments etc. nor recommend estimators
based on sample autocovariances.

The article is organized as follows. The following section reports the findings of the Monte Carlo
simulations, after introducing the AIS and AIL estimators. Section 3 compares the theoretical mean
squared errors of the two estimators under a special case, and section 4 concludes.

2 Background and Numerical Findings

Our study was motivated by an application of regime switching models to option pricing (Hen-
riksen [2011]), where the use of AIS estimators was justified by their ability to capture stylized
features. We follow the same model setup as in Henriksen [2011], which is presented below. Under
this model, the regime changes are governed by a time homogeneous Markov chain Y (t), which can
move between any one of the k regimes {1, 2, . . . , k}. The asset dynamics is given by a traditional
geometric brownian motion within each regime; for i = 1, 2, . . . , k,

dSi(t) = αiSi(t) dt+ βiSi(t) dBt

where αi and βi are the growth and volatility parameters of the i-th regime.
If we let for i = 1, . . . , k,

χt
i =

{
1 if Y (t) = i
0 otherwise

be the indicator function, indicating the current state of the Markov chain at time t, then the
regime switching asset dynamics can be written in a single equation as,

dS(t) = S(t)

(
k∑

i=1

χt
iαidt+

k∑
i=1

χt
iβidBt

)

We do not observe the Y (t) process, while we observe only the asset prices at times, t =
0,Δt, 2Δt, . . . , nΔt, where Δt represents the frequency of sampling. Correspondingly we have the
log returns defined as, Xi = ln S(iΔt)

S((i−1)Δt) , for i = 1, . . . , n. We use lower case to denote the observed
log returns, x1, . . . , xn, to distinguish them from the corresponding random variables.

We further assume that the regime changes happen only at these discrete time points. Let Yi
denote the state of the Markov chain during the time interval [(i − 1)Δt, iΔt], i = 1, . . . , n, with
transition probabilities pij defined as,

pij = P (Ym = j | Ym−1 = i)
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for all m and 1 ≤ i, j ≤ k. The stationary distribution of the Markov chain is assumed to exist and
is given by π = [π1, . . . , πk]. If P stands for the transition matrix, then we have

P 1 = 1 and πP = π (1)

where 1 is a k × 1 vector of ones.
Using Ito’s lemma one can verify that for every m, given Ym = i, Xm follows a Normal distri-

bution with mean (αi − β2
i
2 )Δt and variance β2

i Δt. In the rest of the article, we will use (μi, σ
2
i ) in

the place of ((αi − β2
i
2 )Δt, β2

i Δt), to simplify notation.

Parameter Estimation

Estimating the parameters in this model amounts to estimating π,P and (μi, σi) for i = 1, . . . , k.
It should be noted that between π and P , there are some implicit relations arising out of (1).
We restrict our analysis to a simpler two regime situation, since with more than two regimes,
we estimate multiple transition probabilities simultaneously and we do not have a single mean
squared error (MSE) to compare. So we analyze the two regime case, where the comparison is
more transparent.

Under a two regime model, we need to estimate only μ1, σ1, μ2, σ2, π1 and p11, because of (1).
Henriksen [2011] carries out this estimation in two stages; in the first stage they estimate μ1, σ1, μ2,
σ2 and π1 based on maximum likelihood, and in the second stage, they estimate the transition
probabilities by matching autocovariances. For the two regime model, Timmermann [2000] shows,

E[(X2
i − E[X2

i ])(X
2
i−1 − E[X2

i−1])] = π1(1− π1)(μ
2
2 − μ2

1 + σ2
2 − σ2

1)
2(p11 + p22 − 1)

assuming that the underlying Markov chain is starting from its stationary distribution. Using this
expression and the estimated values from the first stage, Henriksen [2011] proposes,

θ̂1 =
1

(n− 1)π1(1− π1)(μ2
2 − μ2

1 + σ2
2 − σ2

1)
2

n∑
i=2

(X2
i − E[X2

i ])(X
2
i−1 − E[X2

i−1])

as the method of moments estimator for p11+ p22− 1 (the estimated values from the first stage are
plugged in the theoretical value of E[X2

i ]). This will be our AIS estimator. The estimate of p11
can then be obtained using (1). Autocovariances of higher lags are matched when there are more
regimes and hence more transition probabilities to be estimated.

Now Timmermann [2000] also shows that for the same model,

E[(Xi − E[Xi])(Xi−1 − E[Xi−1])] = π1(1− π1)(μ2 − μ1)
2(p11 + p22 − 1)

This suggests

θ̂2 =
1

(n− 1)π1(1− π1)(μ2 − μ1)2

n∑
i=2

(Xi − E[Xi])(Xi−1 − E[Xi−1])

can be another method of moments estimator for p11 + p22 − 1 (the AIL estimator). We will now
compare the performance of the AIS and AIL estimators for this estimation problem.

Since it is hard to write in closed form, the exact expression for the MSE of either of these
estimators, we compare them using a Monte Carlo study. We make the simplifying assumption that
all the parameters except the transition probabilities are known. Then both the above estimators
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are actually unbiased estimators; so clearly the one with the lesser variance (which is same as the
MSE because of no bias) is typically preferred. This assumption is reasonable in the setting of
Henriksen [2011]’s two stage procedure, where all the other other parameters are estimated in the
first stage and only the transition probabilities are estimated in the second stage.

We simulate the regime switching dynamics under various parameter combinations and com-
pute the mean squared error between the true and the estimated transition probability over many
samples. One particular parameter combination (the middle row of the table) is discussed in more
detail in the next section. We choose the other combinations (of μ1, σ1, μ2, σ2, and π1) around this
special case.

In Table 1, we report the difference: MSE(θ̂1) – MSE(θ̂2). The true parameter values refer to
the values of p11+p22−1. All the entries being positive indicates, that the AIL estimator performs
better in terms of MSE. The standard errors for each of the entries, were found to be low enough
to make these positive entries statistically significant.

Each entry in the table was obtained using 1000 simulations, where in each simulation a time
series of length 250 was simulated under the regime switching dynamics. We notice enough evidence
in the two regime case to conclude that AIS has higher variance compared to AIL, thereby indicating
that capturing stylized features may not have a direct effect on improving estimation accuracy.

In one of the parameter combinations, where μ1 = 1, σ2
1 = 1, μ2 = 6 and σ2

2 = 2, the two
populations are quite far apart and looking at the Xi s, it is relatively easy to label them with their
corresponding regimes because of this distance. Thus in this case the transition probabilities across
regimes should be easier to estimate given the data. Both AIL and AIS estimators also performed
well in this case, as we observed with their individual MSEs.
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Table 1: Reduction in simulated mean squared errors when θ̂1 is replaced by θ̂2

(a) π1 = 0.3

True parameter values

-0.8 -0.2 0 0.2 0.8

(μ1, μ2, σ
2
1, σ

2
2)

(1, 1.2, 1, 1) # 69.4 67.5 69.7 77.9

(1, -1.2, 1, 1) # 134.3 129.2 143.6 140.9

(1, 6, 1, 2) # 0.0056 0.0063 0.0049 0.0048

(b) π1 = 0.5

True parameter values

-0.8 -0.2 0 0.2 0.8

(μ1, μ2, σ
2
1, σ

2
2)

(1, 1.2, 1, 1) 42.0 40.6 45.8 42.7 38.0

(1, -1.2, 1, 1) 85.4 78.9 77.2 81.9 85.0

(1, 6, 1, 2) 0.003 0.0025 0.0027 0.0024 0.004

(c) π1 = 0.7

True parameter values

-0.8 -0.2 0 0.2 0.8

(μ1, μ2, σ
2
1, σ

2
2)

(1, 1.2, 1, 1) # 47.2 47.9 45.4 48.2

(1, -1.2, 1, 1) # 101.8 96.7 101.6 102.7

(1, 6, 1, 2) # 0.0004 0.0013 0.0022 0.0061

#: These parameter combinations are not possible due to restrictions placed by equation (1)

3 Analytical Comparison

We will analytically compare the variance of AIS and AIL under a special case, which will explain
some of the positive entries observed in Table 1. As in section 2, we assume that all parameters
other than the transition probability are known and we will compare V ar(θ̂1) with V ar(θ̂2). We
make these comparisons without actually computing these two variances, as we will show below.

Since they are both unbiased for p11+p22−1, it is enough to compare E(θ̂21) and E(θ̂22). We note
that for all i, E[Xi] = π1μ1 + π2μ2, because of stationarity. We will denote this by ν1. Similarly
we define, ν2 = E[X2

i ] = π1(μ
2
1 + σ2

1) + π2(μ
2
2 + σ2

2). Consider E(θ̂22) first.

E(θ̂22) =
1(

(n− 1)π1(1− π1)(μ2 − μ1)2
)2E

(
n∑

i=2

(Xi − ν1)(Xi−1 − ν1)

)2

.

The expectation on the right hand side of the above expression will be a linear combination of three
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simpler expected values, which are,

E
[
(Xi − ν1)(Xi−1 − ν1)(Xi+j − ν1)(Xi+j−1 − ν1)

]
(2)

E
[
(Xi−1 − ν1)(Xi − ν1)

2(Xi+1 − ν1)
]

(3)

E
[
(Xi − ν1)

2(Xi−1 − ν1)
2
]
. (4)

For the AIS estimator,

E(θ̂21) =
1(

(n− 1)π1(1− π1)(μ2
2 − μ2

1 + σ2
2 − σ2

1)
2
)2E

(
n∑

i=2

(X2
i − ν2)(X

2
i−1 − ν2)

)2

.

As with the AIL case, there will be three simpler expected values for the expectation on the right
hand side;

E
[
(X2

i − ν2)(X
2
i−1 − ν2)(X

2
i+j − ν2)(X

2
i+j−1 − ν2)

]
(5)

E
[
(X2

i−1 − ν2)(X
2
i − ν2)

2(X2
i+1 − ν2)

]
(6)

E
[
(X2

i − ν2)
2(X2

i−1 − ν2)
2
]
. (7)

Each of these six expected values will be easy to compute and compare, once we condition on
the underlying Markov chain. An appendix contains the proof that the conditional expectations of
each of (2), (3) and (4) are lesser than the conditional expectations of (5), (6) and (7) respectively,
under a special case when π1 = 0.5, σ1 = σ2 and μ1 is close to −μ2. This comparison is done after
taking in to account the different scaling constants that appear in θ̂1 and θ̂2.

The inequalities for conditional expectations also carries over to the unconditional expectations,
since the coefficients of the conditional expectations are the marginal probabilities of the Markov
chain, which are same for both E(θ̂21) and E(θ̂22). Thus in this special case (which is similar to
row 5 in the table of section 2), θ̂1 has higher variance compared to θ̂2, for all possible values of
p11 + p22 − 1.

4 Discussion

We have shown that estimators which are specifically constructed to capture stylized features do
not always guarantee better estimation accuracy. They still have to pass the conventional tests for
“good” estimators. One can similarly ask ‘Whether an accurate estimator will do a good job in
capturing stylized features?’. Our answer is: Yes, it does, since essentially we are doing a model
fitting exercise, and smaller is the gap between the true and the estimated model, better is the
fit. Accurate estimators automatically take care of accurately capturing the stylized features that
are implied by the model. Thus one need not worry about the false dichotomy between these two
criterion (capturing stylized features and estimation accuracy) in choosing an estimating procedure.
We have also shown that, for a special case, AIS estimators are indeed inadmissible for estimating
the transition probabilities of the underlying Markov chain. It will be interesting to see whether
this inadmissibility generalizes to AIS based estimators for models with more regimes.

In addition, from our simulations we notice that the improvement of the AIL estimator is
higher, when there is a larger overlap between the underlying populations, which is when estimation
accuracy plays a more important role. The finite sample MSE comparisons in section 3, are in
general difficult to obtain for estimators in models with more number of regimes, due to the presence
of covariance terms. We hope that some of these calculations will provide us a useful starting point,
for finding improvements to the overall estimation procedure for these models.
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Appendix

We give here the details of the argument that Variance of θ̂2 is less compared to that of θ̂1, when
π1 = 0.5, σ1 = σ2(= σ) and μ1 is close to −μ2. We start with the comparison between the expected
values (2) and (5). We note that,

E[(Xi − ν1) | Yi] =
{ − (μ2−μ1

2

)
if Yi = 1

μ2−μ1

2 if Yi = 2

and

E(X2
i − ν2) =

{
−
(
μ2
2−μ2

1
2

)
if Yi = 1

μ2
2−μ2

1
2 if Yi = 2.

Also (2) can be written as,

E
[
(Xi − ν1)(Xi−1 − ν1)(Xi+j − ν1)(Xi+j−1 − ν1)

]
=

E
[
E
[
(Xi − ν1)(Xi−1 − ν1)(Xi+j − ν1)(Xi+j−1 − ν1)

] | Yi, Yi−1, Yi+j , Yi+j−1.
]

Similarly for (5).
If we assume that μ1 < μ2 (without loss of generality), μ2

1 < μ2
2 and fix the values for

Yi, Yi−1, Yi+j , Yi+j−1, then the conditional expectation for (2) will be exactly same as the con-
ditional expectation for (5), after dividing by the scaling constants that appear in the expressions
of θ̂1 and θ̂2. We repeatedly use the fact that in this model, the dependence of Xi s is through the
Yi s and once the values of Yi s are known, the Xi s become independent.

Since all the conditional expectations are equal, this implies that the unconditional expectation
in (2), when divided by (μ2 − μ1)

4 and the unconditional expectation in (5), when divided by
(μ2

2 − μ2
1)

4 are one and the same. Similar arguments can also be used to show the equality of (2)
and (5), when σ1 �= σ2, but this relaxation will make the proof difficult for the remaining two
inequalities derived below. So we retain the assumption of σ1 = σ2 in what follows.

Next we compare (3) and (6). For a two-state Markov chain, (Yi−1, Yi, Yi+1) will have 8 possible
values. Like in (2) and (5), the conditional expectations for (3) and (6) will have the same absolute
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values; only their signs will differ. Combining these terms with the marginal probabilities of the
Markov chain, we get,

E
[
(Xi−1 − ν1)(Xi − ν1)

2(Xi+1 − ν1)
]
= 0.25(σ2 + 0.25(μ2 − μ1)

2)(μ2 − μ1)
2(2p11 − 1)2

E
[
(X2

i−1 − ν2)(X
2
i − ν2)

2(X2
i+1 − ν2)

]
=

0.25(2σ4 + 2σ2(μ2
1 + μ2

2) + 0.25(μ2
2 − μ2

1)
2)(μ2

2 − μ2
1)

2(2p11 − 1)2

We also observe that,
σ2

(μ2 − μ1)2
≤ 2σ4 + 2σ2(μ2

1 + μ2
2)

(μ2
2 − μ2

1)
2

,

since 2(μ2
1 + μ2

2) ≥ (μ1 + μ2)
2. This shows that the expectation in (3), when divided by (μ2 − μ1)

4

is always less than or equal to the expectation in (6) divided by (μ2
2 − μ2

1)
4.

Coming to the last comparison between (4) and (7) we have,

E
[
E
[
(Xi − ν1)

2(Xi−1 − ν1)
2
] | Yi−1 = 	, Yi = m

]
= (σ2 + 0.25(μ2 − μ1)

2)2

and
E
[
E
[
(X2

i − ν2)
2(X2

i−1 − ν2)
2
] | Yi−1 = 	, Yi = m

]
=

(2σ4 + 4σ2μ2
� + 0.25(μ2

2 − μ2
1)

2)(2σ4 + 4σ2μ2
m + 0.25(μ2

2 − μ2
1)

2)

for 	,m ∈ {1, 2}.
Also, (2σ2 + 4μ2

m)(μ2 − μ1)
2 ≥ (μ2

2 − μ2
1)

2 for m = 1, 2, whenever μ1 is close to −μ2 (in such a
case the right hand side of the inequality is close to zero). This implies,

σ2

(μ2 − μ1)2
≤ 2σ4 + 4σ2μ2

m

(μ2
2 − μ2

1)
2

,

for m = 1, 2. And this in turn implies that the expectation in (4), when divided by (μ2 − μ1)
4 is

always less than or equal to the expectation in (7) divided by (μ2
2 − μ2

1)
4.

This completes the proof that Variance of θ̂2 is less compared to that of θ̂1, under the special
case considered here.
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