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Abstract: Convoy movement problem is the problem of routing and scheduling military 

convoys across a limited route network while satisfying some strategic constraints. The 

problem bears lot of similarities with other real-life applications such as scheduling passenger 

and freight trains along a single line network, scheduling aircraft landings on runways, routing 

of automated guided vehicles in a FMS environment, handling baggage along a common 

automated conveyer belt system, to name a few. Being a proven NP–complete problem, this 

problem warrants the usage of meta-heuristics to obtain quick solutions. This work focuses 

on the development of a hybridized ant colony algorithm that combines local search with ant 

colony optimization to solve the problem. By testing the methodology on a wide range of 

hypothetical problem instances, we establish the efficacy and practical relevance of the 

proposed approach. The importance of using a good seed solution for initializing the trail 

intensities is analyzed and found that it leads to quicker convergence of the algorithm. The 

need to hybridize the ant colony algorithm with a local search procedure for obtaining superior 

results is also demonstrated. 

Keywords: Military convoys; Ant colony; local search; hybridization; conflicts; 

metaheuristics. 

1. Introduction 

Convoy movement problem (CMP) is the problem of routing and scheduling military convoys 

between specific origin and destination pairs across a limited route road/rail network while 

adhering to some strategic constraints. To better understand the relevance of this problem, 

we present some background information pertaining to military logistics. In order to undertake 

missions such as armed conflict, humanitarian relief and peacekeeping, defense establishment 

would often need to move large number of personnel and equipage from their home bases to 

the regions of conflict, threat or crisis as swiftly as possible. During the process of military 

deployment, each unit moves as a convoy consisting of fleet of vehicles that must travel nose 

to tail with a gap of 50–100m between them. Apart from arms and ammunition that are  
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obvious, convoys carry dry rations, fuel, clothing, medicines and personnel involved in support 

services. Specially designed high capacity transporting vehicles, called as transporters are 

used to carry armored fighting vehicles (AFVs) such as tanks and armored personnel carriers 

with a view to reduce the physical wear and tear and mechanical failures that might occur to 

them while moving on the ground.  

Any military movement typically happens in one of the two contexts: peacetime and 

wartime. During peacetime, convoys usually travel in the nights trying to minimize disruptions 

to civilian traffic while halting en-route at pre-decided locations during daytime. However 

during wartime or crisis situations, convoys from their home bases continue to travel without 

any halt until they reach their respective destinations (Chardaire et al. 2005). Though this 

problem appears to be the case of simple multiple origin-destination pair shortest path 

problem, there are two constraints that make the problem significantly different and 

computationally intractable. They are termed no-crossing and minimum headway constraints. 

Situations where two convoys cross each other along the same road/rail-link is referred to as 

conflict. Be it peacetime or wartime, conflicts are strictly forbidden as the roads/rail-links used 

by the convoys may not have the load bearing ability and width to accommodate two convoys 

at the same time (Lee et al. 1996). More importantly, convoys crossing each other are 

extremely vulnerable to enemy strikes owing to the magnitude of damage that can be inflicted 

upon. On the similar lines, convoys are not allowed to overtake each other and are expected 

to maintain minimum headway time while traveling along a road/rail link in the same direction. 

This constraint also helps in preventing accidents and confusion among the personnel. In 

addition to the no-crossing and minimum headway constraints, convoys are expected to reach 

their respective destinations on or before their individual due dates and lastly, to prevent 

convoys from getting exposed to enemy’s surveillance for a longer period of time, there are 

restrictions on the total travel time spent by each convoy while traveling across the network. 

This problem of routing and scheduling military convoys across a limited route network with 

an objective to minimize the sum of arrival times of each convoy at its respective destination 

while satisfying all the aforementioned constraints is known as the convoy movement problem. 

With a few modifications, problem instances of CMP can easily give rise to a lot of 

other practical applications. Scheduling passenger and freight trains along a single line rail 

network, routing baggage along a common automated conveyer belt system at airports, 

scheduling aircraft landings on runways, hazardous material transportation, and routing 

automated guided vehicles (AGVs) in a flexible manufacturing system (FMS) environment are 

some of the scenarios that share similarities with instances of CMP.  
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 Though smaller instances of CMP can be solved to optimality using commercial solvers, 

the scope for solving practical and large problem instances using conventional mathematical 

modeling based approaches is limited owing to its NP-completeness (Chardaire et al. 2005). 

Hence, from a practical point of view, it is important to generate routes and schedules for 

convoys quickly even if it is at the expense of the quality of the solution. This necessitates the 

development of heuristics/meta-heuristics for solving the CMP. In the operations research 

literature, there is no dearth of application of heuristics & meta-heuristics for a wide range of 

optimization problems in the fields of manufacturing, logistics, telecommunications, medicine, 

power systems, space and defense to name a few (Gonzalez, 2007; El-Ghazali Talbi, 2009). 

Evolutionary techniques such as Genetic Algorithms (GA), Simulated Annealing (SA), Taboo 

Search (TS) and Ant Colony Optimization (ACO) are the most widely used search procedures. 

The key advantage of meta-heuristics over simple heuristics is their adaptability to the problem 

at hand. With a broad framework, these methodologies are amenable for handling a variety 

of optimization problems. Though the degree of success varies from case to case, nonetheless, 

over the years, the techniques have been proven to be quite efficient.     

In this study, we propose a hybridized ant colony based metaheuristic approach by 

combining ant colony algorithm with a local search procedure for solving the convoy 

movement problem. Ant colony optimization is a class of optimization algorithms based on the 

pheromone trail laying and foraging behavior of real ants. Dorigo et al. (1996) proposed ACO 

using the well-known traveling salesman problem. Since then, ACO has been applied to other 

combinatorial optimization problems such as sequential ordering (Gambardella and Dorigo, 

2000), scheduling (Rajendran and Ziegler, 2004), assembly line balancing (Ozbakir et al. 

2011), vehicle routing problems (M.M.S. Abdulkader et al. 2015), quadratic assignment 

problems (Acan and Unveren, 2015), DNA sequencing (Blum et al. 2008), and so on with 

varying success rates. For a detailed review of ACO applications, interested readers can refer 

to Dorigo and Blum (2005) and Dorigo and Stutzle (2009). We intend to investigate the 

suitability of the proposed Hybridized Ant Colony (HAC) algorithm for CMP, in terms of 

computational time and solution quality, by testing it on a wide range of problem instances. 

We use both CPLEX based optimal methodology and GA based meta-heuristic procedure 

reported in the literature to compare and comment on the quality of the results obtained. 

Also, we analyze the effect of choosing a heuristic seed solution for initializing the pheromone 

trail intensities and hybridizing the ant colony algorithm with a local search procedure on the 

overall performance.    

The rest of the paper is organized as follows. We review the literature pertaining to 

CMP and highlight the research gap in Section 2. The proposed hybridized ant colony algorithm 
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with a detailed flowchart is explained in Section 3. The characteristics of the generated test 

problem instances is presented in Section 4. The computational results are summarized in 

Section 5 followed by conclusions and scope for further work in Section 6. 

2. Literature Review 

In this section, we review the literature pertaining to the convoy movement problem with 

specific focus on the solution methodology adopted for solving the problem. To the best of 

our knowledge, Bovet et al. (1991) were the first to introduce the convoy movement problem. 

They consider the problem of scheduling a collection of military convoys along one single 

road-link with a pre-specified time-window for every convoy’s departure. They explicitly 

consider forbidding conflicts. The authors propose a mixed integer programming model and a 

heuristic based on Taboo search procedure. Schank et al. (1991) and McKinzie and Barnes 

(2004) in their review work observe that majority of the strategic military mobility models in 

vogue use either cumbersome and ineffective classical optimization algorithms or simplistic 

and ineffective greedy approaches. They advocate the use of advanced computer models to 

improve the fidelity and reliability of the results generated. Lee et al. (1996) propose a branch-

and-bound algorithm for solving a basic version of the CMP with delays and a hybrid approach 

based on Genetic Algorithms (GA) and branch-and-bound (GA to compute the delays and B&B 

algorithm to compute the paths). An important limitation of this work is the generation of 

complex and circuitous paths that convoys, occasionally, have to take to reach their 

destinations. Montana et al. (1999) investigate the problem of routing and scheduling military 

convoys between a single origin and destination pair using genetic algorithms while 

considering multiple objectives. They divide the problem into two parts (a) selecting a fixed 

set of routes and (b) convoy formation of trucks and assignment of routes and departure 

times for individual convoys. Harrison and Rayward-Smith (1999) consider the problem of 

finding minimal cost linkages in graphs and discuss its relevance to the convoy movement 

problem. Harrison (2000) presents a formal specification of the convoy movement problem 

and presents a model in terms of a time-space network. A Lagrangean relaxation based 

heuristic technique is proposed and evaluated on realistic scenarios based on the UK MoD’s 

Scenario Advisory Group (SAG) settings.  

Chardaire et al. (2005), in their seminal work, establish that the CMP is NP-complete 

by establishing that the disjoint connecting path problem can be polynomially reducible to the 

decision version of the CMP. They introduce an integer programming model based on the 

concept of a time-space network for a simplified version of the model. Tuson and Harrison 

(2005) propose a simple heuristic based on delay search and demonstrate that the NP-
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hardness is only a worst case measure of the problem’s time complexity and real world 

problems need not necessarily be hard to solve. Robinson and Leiss (2006) propose a 

methodology combining genetic algorithms with discrete event simulation for convoy 

scheduling. They show that their approach automatically removes conflicts from a convoy 

schedule iteratively and generate quick results for realistic problem instances. Ram Kumar and 

Narendran (2008, 2009a) propose a robust mixed integer programming (IP) model for solving 

the convoy movement problem. They demonstrate its suitability for small to moderate size 

problem instances (up to 50 cities and 10 convoys) and propose simple heuristics based on 

Dijkstra’s algorithm for larger problem instances. The amenability of their IP model for 

lagrangean relaxation by relaxing no-crossing and minimum headway constraints is presented 

in detail in Ram Kumar and Narendran (2011). Ram Kumar et al. (2009b) propose simulated 

annealing based meta-heuristic procedure for bi-criteria CMP considering total travel time and 

travel span as objectives.  

Gopalan and Narayanaswamy (2009) consider a dynamic version of the CMP where 

convoy demands arise over time. By proving that the 3-satisfiability problem polynomially 

reduces to the restricted version of CMP that they consider, they propose three approximation 

algorithms. Goldstein et al. (2010) propose a genetic algorithm for CMP that allows convoys 

to cross at vertices on a directed route network. They empirically analyze the model via 

discrete event simulation on a single instance of the problem. Lau et al. (2010) propose a 

hybrid methodology combining Dijkstra’s algorithm with constraint programming techniques 

for routing of convoys in an urban city. Gopalan (2015) characterizes the computational 

complexity of several restricted versions of CMP. The author proposes a polynomial time 

algorithm for the specific case of single objective two convoy problem while presenting an 

approximation algorithm for larger number of convoys. Recently, Sadeghnejad-Barkousaraie 

et al. (2016) study the peacetime CMP from a civilian perspective with an objective to minimize 

civilian traffic disruptions. They develop an exact hybrid algorithm combining k-shortest path 

algorithm with minimum weighted k-clique in a k-partite graph. 

To summarize, though there has been a concerted effort over the past 20 years to 

develop solution methodologies based on exact methodologies such as branch & bound (B&B) 

and integer programming (IP) for solving problem instances of CMP, the efforts are focused 

on solving smaller and restricted versions of CMP. Heuristics based on Dijkstra’s algorithm and 

meta-heuristics which have been applied for CMP include Taboo search (Bovet et al. 1991), 

Genetic Algorithms (Lee et al. 1996; Montana et al. 1999; Goldstein et al. 2010), and Simulated 

Annealing (Ram Kumar et al. 2009b).  
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In order to validate the results of this work, especially with respect to computational 

time, we choose the work of Goldstein et al. (2010) for the following reasons: 

 First and foremost, it is a well-known fact that meta-heuristics are very quick 

compared to the conventional optimization procedures. Hence, it is only justifiable if 

the present work is compared with other meta-heuristics reported in the literature. 

 Genetic Algorithms proposed in Lee et al. (1996) and Montana et al. (1999) suffer 

from inherent limitations. For example, Lee et al. (1996) use GA just to compute the 

initial delays associated with convoys by pre-fixing their routes. Similarly, the work of 

Montana et al. (1999) restricts movement of convoys between single origin and 

destination pair. 

 Taboo search reported in Bovet et al. (1990) is applicable for situations when convoys 

are to be routed and scheduled along only single road/rail link. 

 Simulated Annealing based procedure reported in Ram Kumar et al. (2009b) is quite 

specific to a multi-objective problem drawing ideas from goal programming approach. 

 The heuristics reported for CMP are essentially extensions of Dijkstra’s algorithm 

aimed at restoring feasibility of routes and schedules through repairing mechanisms. 

The focus is more on obtaining feasible solutions rather than near-optimal solutions. 

 The version of GA presented in Goldstein et al. (2010), being the latest, considers 

most of the features of CMP unlike older studies. 

Given the success rate with which ant colony optimization has been used for solving a 

variety of routing & scheduling optimization problems and considering the fact that there is 

no published research work, at least to the best of our knowledge, investigating the suitability 

of ant colony algorithms for CMP, motivates us to bridge the research gap by developing a 

hybridized ant colony algorithm for a generic version of the CMP.   

3. Hybridized ant colony algorithm 

3.1 Notations 

The list of notations used to describe the proposed HAC is as follows: 

m - Number of ants (also military convoys) 

𝜂𝑖𝑗 -  Inverse of the distance between nodes i and j 

𝜏𝑖𝑗
𝑘  - Pheromone trail intensity of kth ant on arc (ij) 

𝜌 - Evaporation rate constant 
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Q - Constant used to update trail intensities 

𝑃𝑖𝑗
𝑘 - Probability of ant ‘k’ traversing edge (ij) 

Neligible - Set of nodes eligible for further traversal from the current node 

Lbest - Objective function value of the best solution found so far 

 

3.2 Pseudo code 

Ant colony optimization is a meta-heuristic for obtaining near-optimal solutions for hard 

combinatorial optimization problems in very less computational time. The ants deposit a 

chemical called pheromone while walking on the ground to mark the path from the nest to 

food sources and back. The amount of pheromone influences the probability of ants choosing 

one path over the other. Over a period of time, the process culminates in the ants determining 

the shortest path between the nest and source of food. In this work, artificial ants representing 

military convoys construct conflict-free routes between corresponding origin-destination pairs. 

The route construction mechanism coupled with taboo lists always ensures that only feasible 

solutions are generated. A local search procedure is then employed for further improvement 

in the solution quality. This process completes one iteration of the algorithm. Before the start 

of next iteration, the taboo lists are emptied and the whole procedure is repeated until the 

termination criterion is met. The HAC algorithm is summarized as follows. The detailed 

description pertaining to the generation of seed solution, route construction mechanism and 

local search procedures is presented in the following subsections aided with a flowchart 

illustrated in Fig.1. 

Step 1: Generate a seed solution and initialize the trail intensities across the network 

Step 2: Repeat the following procedure until the termination criteria is satisfied: 

 Assign the first node in the path of all the ants to the corresponding source nodes of 
the convoys. 

 Construct routes between origin-destination pairs for m number of ants. 
 Employ the local search procedure to improve the quality of the solution. 
 Update the information about the best solution found so far. 
 Update the trail intensities across all the arcs of the network. 

Step 3: Terminate the algorithm and report the best solution. 

 

3.3 Seed solution and initialization of trail intensities 
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The pheromone trail intensity across the arcs of the network can be initialized using either a 

small positive constant as suggested in Dorigo et al. (1996) or a heuristic solution. In this 

work, we use the “initial delay” based heuristic proposed by Lee et al. (1996) to generate a 

seed solution for the problem and use it for initializing trail intensities. The heuristic works by 

routing convoys along the shortest paths between corresponding O-D pairs while delaying 

their start time at the source nodes in such a way that the minimum headway and no-crossing 

constraints are satisfied. Using computational experiments, described later in Section 5, we 

also evaluate the effect of choosing a heuristic over a small constant on the overall 

performance of the algorithm. For edges that are part of the seed solution, the pheromone 

intensity is assigned a value of Q/L with L being the sum of arrival times of all the convoys at 

their respective destinations. For the rest of the edges, to ensure diversification of search, the 

pheromone intensity is set at 50% of the value of Q/L.  

3.4 Construction of routes 

Each ant represents a military convoy waiting to traverse from its source node to the 

destination node. The  first  node in the path  of  all  the  ants  is  set  to  the corresponding  

source  node  of  the convoy. During route construction, every ant performs the following 

functions until it reaches the destination node: 

a. From any given node, it prepares a list of nodes eligible for traversal by checking the 

following three criteria:  

- Presence of no other convoy (another ant) traversing that particular edge in the 

opposite direction; 

- If a convoy is detected traveling in the same direction as that of the ant on the 

edge, then minimum headway time should be satisfied; and 

- The edge has not been traversed earlier (taboo list) 

Only if all the above three criteria are satisfied, the node will be added to the eligible 

list. 

b. From the list of eligible nodes, it chooses the next node based on a probability function 

(Equation 1) of the distance between the nodes and the amount of pheromone deposit 

on the edge connecting the nodes. However, it is important to mention here that the 

pheromone deposits by multiple ants along a particular edge are considered 

independent. This implies the probability of an ant choosing a particular edge depends 

on the visibility and the quantum of pheromone deposits made only by those ants that 
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traversed between that particular O-D pair in the earlier iterations. This step forms the 

crux of the algorithm. 
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3.5 Local search procedure 

After the construction of routes by the ants, for possible improvement in the quality of the 

solution, a local search procedure is employed. The purpose is to explore the neighborhood 

of the best solution obtained so far for further improvement. Here, we use insertion based 

local search. On the paths generated by each ant, a node that has direct connectivity with the 

destination node is randomly chosen and both of them are joined bypassing the rest of the 

route. If the resulting solution is devoid of conflicts with the routes and schedules of other 

convoys, the new solution is updated as the current best solution. This procedure is repeated 

10 times on the routes of every ant. The best solution obtained at the end of local search is 

used to update the pheromone trails for the beginning of subsequent iteration. 
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 Figure 1: Flowchart of HAC 
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3.6 Updating pheromone trail intensities 

After performing local search on the best solution obtained at the end of every iteration, the 

pheromone trail intensities are updated on all the arcs. Pheromone is a chemical that evaporates 

over time. As originally proposed by Dorigo et al. (1996), the evaporation rate is controlled by a 

parameter called trail evaporation constant ρ whose value lies between 0 and 1. As shown in 

Equation (2), the trail intensity on the arcs that are part of the best solution is augmented whereas 

for the rest of the arcs, it is lowered.  

* 500 / ,     
 

*         Otherwise                                      

k

ij bestk

ij k

ij

L if edge ij best solution 


 

  
 


                                                         (2) 

4. Computational Experiments 

In this section, we explain in detail how the problem instances were generated, their 

characteristics and the values chosen for different parameters of the algorithm. We also briefly 

describe the working of GA for CMP as presented in Goldstein et al. (2010). 

4.1 Problem datasets 

The unavailability of benchmark problem instances and the inaccessibility of the DSTL (Defence 

Science and Technology Laboratory, UK) datasets used in Chardaire et al. (2005) prompted us to 

generate our own hypothetical problem instances based on the network characteristics reported 

in the literature. We characterize each problem instance of CMP with four parameters: Number 

of nodes (N); Number of convoys (C); Arc-density factor (μ); and Identical destination factor (θ).  

We consider 8 different sized networks by varying the number of nodes from 10 to 100 as 

summarized in Table 1. The number of convoys is dependent on the number of nodes and is 

controlled by a parameter called node-convoy ratio whose value varies between 2, 3 and 4. The 

arc density factor, which is a measure of sparseness of the network, can be loosely defined as 

the ratio of number of available arcs to maximum possible number of arcs. The arc density factor 

is varied between 0.25, 0.50, and 0.75 for all the networks with arc lengths (measured in time 

units) ranging from 100 to 1000. Identical destination factor, as the name suggests, indicates the 

percentage of convoys heading towards the same destination. The value of θ varies between 0.2, 

0.4 and 0.6. For the sake of simplicity, it is assumed that all the convoys are ready at their origin 

nodes at time zero and travel across the network at the same speed. The due date imposed for 
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every convoy to reach its destination is four times the shortest time between the corresponding 

O-D pair. To avoid input bias, for every combination of input parameters, 10 problem instances 

are generated by changing the origin and destination pairs. A total of 2160 problem instances are 

generated and solved. The network data has been found to be consistent and representative of 

real-life instances by serving Indian army personnel, who wish to remain anonymous.  

Table 1: Network Characteristics 

Network 
ID 

Number 
of Nodes 

Number of 
Convoys 

N1 10 3 4 5 

N2 15 4 5 8 

N3 25 7 9 13 

N4 35 9 13 18 

N5 50 13 17 25 

N6 75 18 27 35 

N7 85 22 29 43 

N8 100 25 34 50 

 

4.2 Parameter setting 

For a given problem instance, the number of ants in the HAC is always equal to the number of 

convoys to be routed across the network. The value of Q for initializing the trail intensity across 

all the arcs is chosen as 2500. After conducting initial trial of experiments, this value is arrived at 

as a trade-off between computational time and extent of exploration of search space. Too big a 

value for Q results in saving computational time but poor exploration and similarly a small value 

allows to examine the search space thoroughly but takes longer time for convergence. We found 

that the combination of ∝= 1, 𝛽 = 2.5 𝑎𝑛𝑑 𝜌 = 0.8  results in the best performance of the 

algorithm. 

4.3 GA based search procedure 

Goldstein et al. (2010) propose a form of genetic algorithm, christened as “local beam search”, 

to generate quick solutions to CMP. Essentially, the procedure starts with finding the shortest 

paths for all the convoys between respective O-D pairs using Dijkstra’s algorithm. The initial 
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population consists of 10 copies of this solution. For each solution, 8 new solutions are generated 

by resolving the conflicts either by slowing down the speed of the convoys or by re-routing the 

convoys. This results in generating 80 new solutions. The best 10 out of the total 90 solutions 

are selected for next generation. The search process is terminated when there is no improvement 

from one generation to another. There is no mention about any crossover or mutation 

mechanisms to improve the solution quality. 

5. Computational results 

The proposed HAC algorithm and the GA version reported in Goldstein et al. (2010) were coded 

in Visual C++ and solved on a desktop computer run on dual core (3.2 GHz) processor with 4GB 

of RAM on a Windows 7 operating system. The programs were allowed to run for a maximum of 

15 minutes (900 seconds) or when there is no improvement in the final solution for successive 

100 iterations, whichever is earlier. For solving the problem instances to optimality, the integer 

programming (IP) mathematical model reported in Ram Kumar et al. (2010) was used and solved 

using CPLEX optimization studio version 12.5 with a computational time limit of 8 hours. Problem 

instances for which optimal solutions were found within the set time, the quality of heuristic 

solutions is assessed using Equation (3). For larger problem instances, where CPLEX fails to 

converge to optimality even after 8 hours, the heuristic solutions are compared with lower bounds 

(the problem being a minimization objective) as shown in Equation (4). Obviously, lesser the % 

gap, better the quality of the heuristics. We use the Lagrangean Relaxation (LR) procedure 

reported in Ram Kumar and Narendran (2011) to generate lower bounds. In their work, the 

authors propose absorbing the no-crossing and minimum headway constraints into the objective 

function of their IP model by attaching Lagrangean multipliers and solving the rest of the problem 

as a multiple origin-destination pair shortest path problem.  

Quality of Heuristic solution w.r.t optimal solution = 100%
Heuristic optimal

optimal

Z Z
x

Z


                         (3) 

Quality of Heuristic solution w.r.t lower bound = 100%
Heuristic Lagrangean

Lagrangean

Z Z
x

Z


                          (4) 

The results are tabulated, network wise, from Tables 2 to 9. The following are the inferences 

drawn from the results.  
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 From the results, it is clear that, as the problem size increases, the computational time 

also increases. In the case of CPLEX, the rate of increase appears to be exponential 

whereas it looks linear in the case of HAC and GA. 

 While the HAC could solve problem instances up to 85 nodes and 43 convoys within the 

set computational time of 900 seconds, the GA could only solve up to 35 nodes. One 

possible reason for the poor performance of GA may be because of the extensive 

computational effort required for the generation of feasible solutions itself. As mentioned 

in Section 4.3, the GA procedure reported is only an advanced form of local search rather 

than a global search procedure. Moreover, the absence of crossover and mutation 

mechanisms may also be contributing to the poor performance. 

 Within the set time of 8 hours, CPLEX could generate optimal solutions only up to a 

problem size of 50 nodes. Beyond network N5, lower bounds were generated and used to 

benchmark the quality of heuristics. The fact that CPLEX takes more than 8 hours to 

converge to optimality for moderate sized problem instances makes this research work all 

the more relevant and practical. 

 Across all the networks, consistently, HAC outperforms GA both in terms of computational 

time and computational quality. Though the superiority of HAC over GA is expected, the 

poor performance of GA can again be attributed to the fact that the information available 

in the public domain about the finer details of the working of GA is limited which directly 

affects the GA’s performance. 

 For problem instances up to 50 cities, the average quality of HAC is less than 5%. Beyond 

this size, the average % gap almost gets doubled to 10%. This is partially because of the 

fact that the lower bounds generated using Lagrangean relaxation represent only proxy 

optimal solutions. The quality of lower bounds also influences the final % gap reported.  

 From Fig. 2, it can be observed that, for all the networks, the identical destination factor 

appears to be least influencing of the computational time. Upon thorough examination of 

the routes and schedules of the convoys, it is learnt that though multiple convoys are 

headed towards an identical destination, there were no conflicts among them to share the 

same edge at the same time. Hence there was no “competition” as such to occupy an 

edge and, by default, the minimum headway constraint was satisfied. So, the identical 

destination factor did not make any difference to the computational time.  
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 From Fig. 3, it can be inferred that the node-convoy ratio plays an important role in 

determining the computational time for convergence. It can be noted that problem 

instances with higher number of convoys (lower node-convoy ratio) took relatively longer 

time for convergence. This is not at all surprising because of the way the algorithm has 

been designed and executed.  

 Similarly, from Fig. 4, it is evident that higher the arc-density factor value, the longer it 

took the algorithm to converge to a near-optimal solution. Again, this could be because 

the pheromone intensities are to be updated at the end of every iteration on the large 

number of edges present in the network. Moreover, with higher connectivity, the 

calculation of transition probabilities, the updating of taboo lists, etc. consume relatively 

more computational effort. 

 From Fig. 5, it is interesting to note that the quality of heuristic solutions is better for 

networks with higher arc-densities and relatively poor for networks with lower arc-

densities. This is a counter intuitive result. Upon detailed examination of the results, we 

understood that for networks with low arc-densities, the number of feasible solutions itself 

is very less. It is because of this reason, the conflicts among the convoy schedules were 

large in number and seldom there was any improvement in the quality of solutions over 

hundreds of iterations. This problem led to the algorithm getting quickly converged to a 

local optima rather than a global optima. Even the local search procedure proved to be 

futile in these cases. 

 

 

 

 

 

 

 

Figure 2: Identical destination factor Vs Computational time 
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Figure 3: Node-convoy ratio Vs Computational time 

 

 

 

 

Figure 4: Arc-density factor Vs Computational time 
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Figure 5: Arc-density factor Vs Computational quality 
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Network 
ID 

Number 
of 

Nodes 

Number 
of 

Convoys 
(Node-
convoy 
ratio) 

Arc-
density 
factor 

Identical 
Destination 

Factor 

Average 
Computational time 

(seconds) 

Average 
Computational 

quality 

CPLEX HAC GA HAC* GA@ 

N1 10 

5 (2) 

0.25 

0.2 0.95 8.07 11.76 0 0 

0.4 0.71 7.83 13.69 0 0 

0.6 0.97 6.62 13.4 0 0 

0.50 

0.2 0.59 7.41 14.75 0 0 

0.4 0.97 5.02 10.81 0 0 

0.6 0.28 7.71 9.74 0 0 

0.75 

0.2 0.62 4.62 9.28 0 0 

0.4 0.85 7.54 13.88 0 0 

0.6 1.05 4.96 11.18 0 0 

4 (3) 

0.25 

0.2 0.72 6.15 14.96 0 0.03 

0.4 0.92 4.54 14.74 0 0 

0.6 0.73 4.55 13.23 0 0 

0.50 

0.2 0.93 7.53 9.69 0 0 

0.4 0.5 8.61 11.78 0 0 

0.6 0.4 6.82 9.33 0 0 

0.75 

0.2 0.72 7.81 9.96 0 0 

0.4 0.25 7.69 9.27 0 0 

0.6 0.98 5.75 10.08 0 0 

3 (4) 

0.25 

0.2 0.28 4.28 9.46 0 0.01 

0.4 0.82 6.94 12.04 0 0 

0.6 0.26 7.45 9.58 0 0 

0.50 

0.2 0.65 8.81 14.65 0 0 

0.4 0.38 10.98 14.46 0 0 

0.6 0.41 7.50 10.92 0 0 

0.75 

0.2 0.92 7.46 9.41 0 0 

0.4 0.27 4.11 14.98 0 0 

0.6 0.43 8.16 12.85 0 0 

 

* - ((ZHAC – ZCPLEX)/ ZCPLEX) * 100% 

@ - ((ZGA – ZCPLEX)/ ZCPLEX) * 100% 

– Failed to converge within the set time 

 

 

 

Table 3: Results of Network N2 
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Network 
ID 

Number 
of 

Nodes 

Number 
of 

Convoys 
(Node-
convoy 
ratio) 

Arc-
density 
factor 

Identical 
Destination 

Factor 

Average 
Computational time 

(seconds) 

Average 
Computational 

quality 

CPLEX HAC GA HAC* GA@ 

N2 15 

8 (2) 

0.25 

0.2 1.45 18.13 34.21 0 0.13 

0.4 1.47 15.75 20.47 0 0 

0.6 2.11 19.24 25.53 0 0 

0.50 

0.2 1.95 24.31 15.02 0 0.08 

0.4 2.38 19.28 15.38 0 0 

0.6 2.01 27.89 20.14 0 0 

0.75 

0.2 2.49 29.34 33.08 0 0 

0.4 2.28 31.15 33.06 0 0 

0.6 1.33 30.98 24.77 0 0 

5 (3) 

0.25 

0.2 1.01 14.18 12.39 0 0.21 

0.4 0.94 12.12 20.96 0 0 

0.6 1.30 12.19 22.48 0 0 

0.50 

0.2 1.57 15.72 11.23 0 0 

0.4 1.28 17.02 30.52 0 0.07 

0.6 1.42 17.33 26.11 0 0.18 

0.75 

0.2 1.52 20.09 24.71 0 0 

0.4 1.85 20.78 30.83 0 0 

0.6 2.85 18.78 29.35 0 0 

4 (4) 

0.25 

0.2 1.33 12.91 18.26 0 0.10 

0.4 2.64 14.14 26.45 0 0 

0.6 1.31 12.09 32.07 0 0 

0.50 

0.2 2.21 14.77 29.03 0 0 

0.4 1.79 15.25 32.60 0 0.34 

0.6 2.12 15.88 30.63 0 0 

0.75 

0.2 1.88 18.78 13.75 0 0 

0.4 1.67 13.12 23.29 0 0 

0.6 1.75 18.1 32.29 0 0 

 

* - ((ZHAC – ZCPLEX)/ ZCPLEX) * 100% 

@ - ((ZGA – ZCPLEX)/ ZCPLEX) * 100% 

– Failed to converge within the set time 

 

 

 

Table 4: Results of Network N3 
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Networ
k ID 

Number 
of 

Nodes 

Number 
of 

Convoys 
(Node-
convoy 
ratio) 

Arc-
density 
factor 

Identical 
Destination 

Factor 

Average Computational 
time (seconds) 

Average 
Computational 

quality 

CPLEX HAC GA HAC* GA@ 

N3 25 

13 (2) 

0.25 

0.2 49.65 34.08 125.31 1.94 4.96 

0.4 53.14 29.62 81.12 2.38 7.27 

0.6 50.99 35.47 129.16 2.25 5.94 

0.50 

0.2 62.24 41.30 81.14 0 3.55 

0.4 55.71 48.26 116.7 0 6.77 

0.6 51.19 45.92 103.28 0 6.76 

0.75 

0.2 58.37 62.03 104.62 0 3.08 

0.4 54.26 67.19 93.77 0 3.5 

0.6 54.38 63.44 115.19 0 5.38 

9 (3) 

0.25 

0.2 33.45 23.17 92.18 0.77 3.38 

0.4 38.92 19.50 97.94 0.03 7.29 

0.6 38.07 30.04 100.36 0.41 6.8 

0.50 

0.2 44.21 32.20 97.35 0 5.93 

0.4 37.60 35.06 88.69 0 7.73 

0.6 48.29 34.88 90.85 0 4.82 

0.75 

0.2 51.15 42.72 106.3 0 5.68 

0.4 41.29 40.06 97.12 0 3.69 

0.6 47.76 42.39 96.4 0 4.7 

7 (4) 

0.25 

0.2 36.79 20.61 104.55 0.29 7.39 

0.4 30.91 19.47 82.83 0.42 3.78 

0.6 35.48 19.12 100.53 0.48 5.54 

0.50 

0.2 38.22 20.48 109.48 0 6.62 

0.4 39.01 23.50 128.57 0 3.7 

0.6 41.25 23.69 107.71 0 6.38 

0.75 

0.2 40.00 27.11 116.88 0 3.93 

0.4 43.82 31.86 94.08 0 3.97 

0.6 43.16 29.45 86.55 0 5.17 

 

* - ((ZHAC – ZCPLEX)/ ZCPLEX) * 100% 

@ - ((ZGA – ZCPLEX)/ ZCPLEX) * 100% 

– Failed to converge within the set time 

 

 

 

Table 5: Results of Network N4 
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Networ
k ID 

Numbe
r of 

Nodes 

Number 
of 

Convoy
s 

(Node-
convoy 
ratio) 

Arc-
densit

y 
factor 

Identical 
Destinatio
n Factor 

Average Computational 
time (seconds) 

Average 
Computationa

l quality 

CPLEX HAC GA HAC* GA@ 

N4 35 

18 (2) 

0.25 

0.2 
722.0

8 
203.1

1 589.5 
3.17 

11.1 

0.4 
784.2

5 
194.6

6 
548.2

2 
4.58 

9.04 

0.6 
800.1

2 
175.5

0 
525.3

3 
3.99 

12.02 

0.50 

0.2 
922.2

3 
255.8

3 
641.8

5 
0.64 

10.04 

0.4 
928.3

6 
284.6

1 
531.9

6 
0.82 

12.91 

0.6 
875.2

9 
288.9

3 461.5 
0.30 

9.05 

0.75 

0.2 
1134.

2 
308.2

6 452.4 
0.12 

9.15 

0.4 
1189.

5 
344.1

0 
649.4

1 
0.08 

14.83 

0.6 
1331.

6 
340.5

8 
524.2

7 
0.24 

9.02 

13 (3) 

0.25 

0.2 
704.2

1 
142.4

4 
659.7

3 
2.33 

10.23 

0.4 
755.3

2 
158.6

5 
618.5

1 
1.20 

16.91 

0.6 
739.4

8 
158.8

8 
616.5

3 
1.48 

7.13 

0.50 

0.2 
824.2

6 
191.3

6 
494.6

3 
0 

13.4 

0.4 
779.1

2 
185.6

5 
550.5

6 
0 

13.67 

0.6 
844.7

0 
182.9

4 
572.3

7 
0 

10.48 

0.75 

0.2 
902.5

3 
215.1

8 645.3 
0 

12.24 

0.4 
900.7

7 
233.4

9 
483.4

3 
0 

11.24 

0.6 
991.1

3 
240.0

7 604.3 
0 

13.2 

9 (4) 0.25 

0.2 
558.2

9 
103.5

5 
656.5

4 
1.03 

18.51 

0.4 
621.3

4 
134.7

2 502.2 
0 

18.94 
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0.6 
603.5

8 
139.0

0 
511.7

5 
0 

14.05 

0.50 

0.2 
589.3

7 
167.8

4 
582.2

1 
0 

16.03 

0.4 
611.0

8 
158.4

2 
481.9

8 
0 

8.11 

0.6 
676.0

3 
160.0

8 
450.8

5 
0 

17.92 

0.75 

0.2 
653.2

3 
184.2

5 
538.3

1 
0 

15.91 

0.4 
661.2

8 
177.3

1 
411.7

1 
0 

9.08 

0.6 
665.9

0 
180.2

2 
682.5

1 
0 

17.5 

* - ((ZHAC – ZCPLEX)/ ZCPLEX) * 100% 

@ - ((ZGA – ZCPLEX)/ ZCPLEX) * 100% 

– Failed to converge within the set time 

 

 

 

 

Table 6: Results of Network N5 

Network 
ID 

Number 
of 

Nodes 

Number 
of 

Convoys 
(Node-
convoy 
ratio) 

Arc-
density 
factor 

Identical 
Destination 

Factor 

Average Computational 
time (seconds) 

Average 
Computationa

l quality 

CPLEX HAC GA HAC GA 

N5 50 

25 (2) 

0.25 

0.2 20677.15 446.83 900$ 7.64 16.69 

0.4 21115.23 480.68 900$ 6.41 27.38 

0.6 23917.92 409.34 900$ 6.04 20.05 

0.50 

0.2 20571.97 524.46 900$ 3.51 29.1 

0.4 22577.27 500.39 900$ 2.76 22.19 

0.6 22945.03 502.95 900$ 2.66 16.47 

0.75 

0.2 23374.18 586.18 900$ 4.94 16.04 

0.4 21094.35 519.68 900$ 2.71 19.31 

0.6 22371.91 547.26 900$ 4.46 28.49 

17 (3) 
0.25 

0.2 16445.57 437.72 900$ 5.81 15.87 

0.4 19518.63 395.36 900$ 6.64 15.07 

0.6 13095.67 395.13 900$ 5.71 20.18 

0.50 0.2 20337.13 455.55 900$ 3.77 19.84 
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0.4 18272.67 413.7 900$ 2.38 18.43 

0.6 19935.75 425.77 900$ 1.84 26.68 

0.75 

0.2 21605.44 471.77 900$ 1.31 28.31 

0.4 17534.92 489.53 900$ 1.61 27.21 

0.6 15679.83 516.07 900$ 2.79 28.82 

13 (4) 

0.25 

0.2 11024.69 396.28 900$ 6.38 25.75 

0.4 11504.41 444.27 900$ 5.66 17.81 

0.6 14189.49 406.77 900$ 5.29 23.1 

0.50 

0.2 13991.56 509.28 900$ 2.28 15.94 

0.4 14560.15 434.25 900$ 2.42 17.7 

0.6 15907.69 438.97 900$ 1.27 25.01 

0.75 

0.2 17747.93 429.85 900$ 3.75 22.32 

0.4 18556.11 508.73 900$ 2.70 25.14 

0.6 18155.88 510.17 900$ 1.79 22.37 

* - ((ZHAC – ZCPLEX)/ ZCPLEX) * 100% 

@ - ((ZGA – ZCPLEX)/ ZCPLEX) * 100% 

$   - Forced termination after 900 seconds  

– Failed to converge within the set time 

   

 

 

Table 7: Results of Network N6 

Network 
ID 

Number 
of 

Nodes 

Number 
of 

Convoys 
(Node-
convoy 
ratio) 

Arc-
density 
factor 

Identical 
Destination 

Factor 

Average 
Computational time 

(seconds) 

Average 
Computational 

quality 

CPLEX HAC GA HAC** GA@@ 

N6 70 

35 (2) 

0.25 

0.2 - 639.75 900$ 11.49 25.25 

0.4 - 652.31 900$ 13.22 21.83 

0.6 - 634.44 900$ 13.07 25.18 

0.50 

0.2 - 639.22 900$ 9.65 21.96 

0.4 - 683.27 900$ 7.35 20.46 

0.6 - 726.97 900$ 8.57 25.33 

0.75 

0.2 - 684.95 900$ 7.42 26.72 

0.4 - 716.74 900$ 8.09 20.56 

0.6 - 672.84 900$ 7.37 34.31 

27 (3) 
0.25 

0.2 - 583.03 900$ 10.96 21.58 

0.4 - 602.77 900$ 10.62 27.23 

0.6 - 609.05 900$ 12.51 27.18 

0.50 0.2 - 591.71 900$ 7.04 31.06 
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0.4 - 594.04 900$ 9.15 20.09 

0.6 - 602.63 900$ 8.34 27.83 

0.75 

0.2 - 608.16 900$ 6.57 31.74 

0.4 - 609.51 900$ 7.52 26.03 

0.6 - 684.53 900$ 6.03 31.49 

18 (4) 

0.25 

0.2 - 510.24 900$ 10.48 29.93 

0.4 - 570.23 900$ 12.81 20.73 

0.6 - 571.12 900$ 10.67 22.48 

0.50 

0.2 - 606.46 900$ 9.52 28.75 

0.4 - 679.58 900$ 8.94 24.88 

0.6 - 608.33 900$ 6.41 30.93 

0.75 

0.2 - 636.43 900$ 7.98 25.38 

0.4 - 604.51 900$ 8.33 29.03 

0.6 - 693.89 900$ 6.88 34.56 

** - ((ZHAC – ZLAGRANGEAN)/ ZLAGRANGEAN) * 100% 

@@ - ((ZGA – ZLAGRANGEAN)/ ZLAGRANGEAN) * 100% 

$   - Forced termination after 900 seconds  

– Failed to converge within the set time 

 

 

 

Table 8: Results of Network N7 

Network 
ID 

Number 
of 

Nodes 

Number 
of 

Convoys 
(Node-
convoy 
ratio) 

Arc-
density 
factor 

Identical 
Destination 

Factor 

Average 
Computational time 

(seconds) 

Average 
Computational 

quality 

CPLEX HAC GA HAC** GA@@ 

N7 85 

43 (2) 

0.25 

0.2 - 794.45 900$ 13.32 31.4 

0.4 - 818.59 900$ 12.83 24.75 

0.6 - 807.12 900$ 12.56 32.35 

0.50 

0.2 - 863.63 900$ 7.42 20.93 

0.4 - 787.03 900$ 8.63 24.93 

0.6 - 815.63 900$ 7.19 18.89 

0.75 

0.2 - 892.08 900$ 8.25 22.62 

0.4 - 869.15 900$ 8.49 31.07 

0.6 - 889.32 900$ 8.80 24.14 

29 (3) 0.25 

0.2 - 703.52 900$ 13.31 21.08 

0.4 - 747.95 900$ 10.62 28.35 

0.6 - 721.01 900$ 11.79 23.47 

25



0.50 

0.2 - 740.67 900$ 8.44 31.57 

0.4 - 744.63 900$ 6.30 22.15 

0.6 - 813.77 900$ 9.78 23.03 

0.75 

0.2 - 783.29 900$ 8.17 15.18 

0.4 - 802.93 900$ 9.92 23.02 

0.6 - 830.79 900$ 7.20 24.74 

22 (4) 

0.25 

0.2 - 724.78 900$ 14.72 23.51 

0.4 - 689.16 900$ 10.04 33.08 

0.6 - 705.77 900$ 11.24 25.07 

0.50 

0.2 - 699.85 900$ 7.74 21.18 

0.4 - 731.03 900$ 9.16 28.09 

0.6 - 736.32 900$ 7.57 32.96 

0.75 

0.2 - 791.23 900$ 6.19 22.73 

0.4 - 809.51 900$ 8.39 25.33 

0.6 - 811.44 900$ 8.99 27.61 

** - ((ZHAC – ZLAGRANGEAN)/ ZLAGRANGEAN) * 100% 

@@ - ((ZGA – ZLAGRANGEAN)/ ZLAGRANGEAN) * 100% 

$   - Forced termination after 900 seconds  

– Failed to converge within the set time 

 

 

 

Table 9: Results of Network N8 

Network 
ID 

Number 
of 

Nodes 

Number 
of 

Convoys 
(Node-
convoy 
ratio) 

Arc-
density 
factor 

Identical 
Destination 

Factor 

Average 
Computational time 

(seconds) 

Average 
Computational 

quality 

CPLEX HAC GA HAC** GA@@ 

N8 100 

50 (2) 

0.25 

0.2 - 900$ 900$ 14.34 29.66 

0.4 - 900$ 900$ 13.28 32.83 

0.6 - 900$ 900$ 11.87 21.88 

0.50 

0.2 - 900$ 900$ 8.96 21.53 

0.4 - 900$ 900$ 7.91 20.76 

0.6 - 900$ 900$ 8.36 24.62 

0.75 

0.2 - 900$ 900$ 6.58 28.53 

0.4 - 900$ 900$ 7.49 33.78 

0.6 - 900$ 900$ 7.41 25.67 

34 (3) 0.25 
0.2 - 900$ 900$ 13.94 20.05 

0.4 - 900$ 900$ 10.66 23.01 
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0.6 - 900$ 900$ 13.68 25.17 

0.50 

0.2 - 900$ 900$ 7.63 29.01 

0.4 - 900$ 900$ 8.16 34.02 

0.6 - 900$ 900$ 8.76 22.18 

0.75 

0.2 - 900$ 900$ 6.57 23.61 

0.4 - 900$ 900$ 8.99 20.82 

0.6 - 900$ 900$ 7.01 20.85 

25 (4) 

0.25 

0.2 - 900$ 900$ 14.09 21.73 

0.4 - 900$ 900$ 13.65 25.89 

0.6 - 900$ 900$ 11.79 24.34 

0.50 

0.2 - 900$ 900$ 8.01 20.54 

0.4 - 900$ 900$ 8.33 25.67 

0.6 - 900$ 900$ 9.92 37.53 

0.75 

0.2 - 900$ 900$ 8.80 27.42 

0.4 - 900$ 900$ 7.47 29.68 

0.6 - 900$ 900$ 8.43 35.78 

** - ((ZHAC – ZLAGRANGEAN)/ ZLAGRANGEAN) * 100% 

@@ - ((ZGA – ZLAGRANGEAN)/ ZLAGRANGEAN) * 100% 

$   - Forced termination after 900 seconds  

– Failed to converge within the set time 

 

 

 

5.1 Effect of seed solution on the performance of HAC 

Rather than initiating the ant colony algorithm with the conventional approach of assigning a 

small positive trail intensity for all the edges of the network, we used a heuristic seed solution 

instead. With a view to study the effect of choosing a seed solution on the computational time 

for convergence, we choose Networks N4 and N5. In our view, these are neither small nor big 

networks and adequately represent realistic size problem scenarios. The purpose of this exercise 

is to investigate whether choosing a seed solution over a random solution or small positive trail 

intensities results in saving of computational time or not. For this, the algorithm is run with both 

Scenarios A and B, described below, until the solution quality is same as that of the HAC.     

Scenario A: All the edges of the network are assigned a small positive pheromone trail intensity 

of 0.25 units. 
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Scenario B: A random feasible solution is used as a seed solution. As discussed earlier, edges that 

are part of the feasible solution are assigned a trail intensity of 2500/L whereas the rest of the 

edges are assigned 50% of 2500/L, with L representing the objective function value of the random 

feasible solution. 

For the sake of brevity, we report only the average of all the results obtained pertaining to both 

the networks.  

Table 10: Effect of seed solution on computational time 

Network 

Average Computational Time (Seconds) 

HAC Scenario A Scenario B 

N4 204.06 311.74 298.33 

N5 466.55 611.29 545.41 

 

From Table 10, it is evident that initiating the HAC with a good heuristic solution always results 

in saving of computational effort to the extent of 50%. In the absence of a heuristic solution, 

even choosing a random feasible solution to initialize the trail intensities appears to be a good 

strategy for quicker convergence of the algorithm.  

5.2 Effect of hybridization on the performance of HAC 

In the present work, the ant colony algorithm is hybridized with a local search procedure for 

improvement in the solution quality. To investigate whether hybridization helps in arriving at a 

better final solution and to check whether the extra computational effort required for performing 

local search is justifiable, we perform the following analysis. By choosing networks N4 and N5, 

for the same reasons mentioned earlier, we run the HAC code with and without the local search 

procedure by following the termination criteria of 900 seconds. The results are as follows. 

Table 11: Effect of hybridization on computational quality 

Network 

Average computational quality 
w.r.t optimal solution 

Average computational time for 
convergence 

HAC with 
Local search 

HAC without 
Local Search 

HAC with 
Local search 

HAC without 
Local Search 
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N4 0.74% 7.32% 204.06 192.38 

N5 3.87% 12.08% 466.55 438.21 

 

From Table 11, it is obvious that hybridization has a significant effect on the computational quality 

of the HAC solutions. Further, it is observed that both with and without local search, the algorithm 

converged much before the time limit of 900 seconds and most importantly took approximately 

the same computational time. This implies that the local search procedure does not require much 

computational effort. To summarize, hybridizing the ACO procedure appears to be a good idea 

for substantial improvement in the quality of solutions with negligible additional computational 

effort.    

6. Conclusions and Scope for further work 

We proposed a hybridized ant colony algorithm with local search procedure to solve the convoy 

movement problem. We generated hypothetical test problem instances to evaluate the efficacy 

of the proposed approach. The computational experiments indicate that the proposed ant colony 

algorithm produces promising results in less computational time. The results also suggest that 

the use of a good heuristic solution as a seed solution for initializing the trail intensities aids in 

quicker convergence of the algorithm. Lastly, the results strongly point to the need to hybridize 

the ant colony algorithm with local search procedures for superior performance. 

Though the HAC performed well for most of the problem instances, there is one exception. 

Particularly for networks with lower arc densities, the performance was relatively inferior. A 

thorough analysis and re-designing the algorithm to improve the performance in these cases is 

the logical next step. No real-life problem is complete without the consideration of multiple and 

conflicting objectives. Hence, development of a robust ACO framework for a multi-objective CMP 

is another good extension of this work.    
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