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effSAMWMIX : An efficient Stochastic Multi-Armed Bandit Algorithm  based on a 
Simulated Annealing with Multiplicative Weights

Boby Chaitanya Villari 
Doctoral Student of IT & Systems Area, IIM Kozhikode 

Mohammed Shahid Abdulla 
Associate Professor of IT & Systems Area, IIM Kozhikode 

Abstract—SAMWMIX, a Stochastic Multi-Armed 
Bandit(SMAB) which obtains a 𝑶𝑶(𝒍𝒍𝒍𝒍𝒍𝒍 T) where T being the 
number of steps in the time horizon, is proposed in the literature . 
A blind-SAMWMIX which incorporates an input parameter 
,which has better empirical performance but obtains a regret of 
the order 𝑶𝑶(𝒍𝒍𝒍𝒍𝒍𝒍𝟏𝟏+𝟐𝟐𝜶𝜶 𝑻𝑻).Current work proposes an efficient 
version of SAMWMIX which not only obtains a regret of 𝑶𝑶(𝒍𝒍𝒍𝒍𝒍𝒍 
K) but also exults a better performance. A proof for the same is
given in this work. The proposed effSAMWMIX algorithm is 
compared with KL-UCB and Thompson Sampling(TS) algorithms 
over rewards which follow distributions like Exponential, Poisson, 
Bernoulli, Triangular, Truncated Normal distribution and a 
synthetic distribution designed to stress test SMAB algorithms 
with closely spaced reward means. It is shown that effSAMWMIX 
performs better than both KL-UCB & TS in both regret 
performance and execution time. 

Keywords—stochastic multi-armed bandit;stochastic processes; 
reward distributions; optimization; 

I.  INTRODUCTION 

Decision making under uncertainty is a challenge in a 
turbulent environment. Partial feedback from the environment 
leads to incomplete information giving rise to uncertainty. The 
agent has to learn sequentially (i.e. in many iterations) by relying 
only on reinforcements with partial feedbacks obtained due to 
the previous decision. Thus, the decision maker should explore 
the entire set of available decision choices in an attempt to 
improve the knowledge about the problem’s current solution and 
exploit the currently available knowledge on the problem's 
solution choices to choose the best choice. Multi-Armed Bandits 
(MAB), a family of Machine Learning algorithms, are tailor-
made to handle such explore-exploit problem situations[1]. The 
MAB problem is a sequential decision-making task where the 
decision maker (agent) decides to choose (pull), at each time 
step, an action (arm) from a pool of M actions - based on some 
informed choosing strategy (policy). With the aim of 
maximizing the average payoff from this exercise in the long-
run, the agent examines these payoffs to continuously improve 
the policy and decide on the future selection of arms. 
Alternatively, the same can be seen as a regret minimization 
problem where the regret is the difference between rewards of 

an oracle policy that chooses the best arm in every time step and 
the rewards of the learned MAB policy. It is known that in T 
pulls, 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇) regret is the lowest possible regret an MAB 
algorithm can achieve and thus the desirable target. 

The Upper Confidence Bound (UCB) class of MAB 
algorithms, both in the stochastic and contextual settings, is 
considered a benchmark. However, in both settings, UCB 
requires a ‘pick the best arm’ behavior, which is performed by 
explicitly picking the maximum among the N arms. The metrics 
associated with each arm will, however, change from pull to 
pull. This makes the per-step complexity of the UCB class of 
algorithms 𝑂𝑂(𝑇𝑇). The proposed SMAB algorithm – 
SAMWMIX - differs in avoiding maximization and instead 
picking a ‘Soft-Maximum’ via a Boltzmann Exploration 
structure. Since the ‘Soft Maximum’ is encoded inside a 
probability vector, the generation of an arm’s index using this 
probability vector contributes to a 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇) complexity – which 
makes the algorithm very competitive if T happens to be large. 
This advantage is over-and-above the improved precision of 
SAMWMIX and its variants due to a theoretical result[2] that 
bounds the ‘finite sample regret’ (i.e. the probability of choosing 
the wrong arm in each pull).  

In a previous work, the authors proposed Gamma 
Optimized SAMWMIX(GO-SAMWMIX) [3] with a simple 
heuristic improvement  over the original .The bounds on this 
algorithm largely remain the same as that of original but GO-
SAMWMIX is reported to have better effectiveness than its 
predecessor in terms of the number of times the best of the 
choices are chosen by the algorithm over a given time horizon 
𝑡𝑡.This work proposes an efficient version of SAMWMIX which 
not only obtains a regret of 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 T) but also has a better 
performance in terms of efficiency i.e. the number of times the 
best action is pulled and thus lowering the regret or maximizing 
the cumulative reward over the horizon 𝑡𝑡.This work compares 
the performance of effSAMWMIX vis-à-vis that of the state-
of-the-art KL-UCB algorithm [4] and Thompson Sampling(TS) 
algorithm[5, 6] which is seen to gain prominence in this decade. 
The tests are done over rewards which follow distributions like 
Exponential, Poisson, Bernoulli, Triangular and Truncated 
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Normal distribution’s and a synthetic distribution designed to 
stress test the algorithm with closely spaced reward means 𝜇𝜇. 
(see section IV). effSAMWMIX has achieved a superior 
performance as detailed further in this paper. 

II. MULTI-ARMED BANDITS- A REVIEW 

A. The Multi-Armed Bandit(MAB) problem in brief 
A MAB problem is a sequential decision-making problem 

with discrete time steps or horizon 𝑇𝑇.The agent chooses an 
action in every time step from a set of 𝑁𝑁 possible actions. Then 
the environment will provide the reward pertaining to action 𝑖𝑖 at 
time step 𝑡𝑡 < 𝑇𝑇. Thus process continues in the following way. 

1.𝐴𝐴𝑙𝑙𝐴𝐴𝐴𝐴𝑡𝑡 𝑐𝑐ℎ𝑙𝑙𝑙𝑙𝑜𝑜𝐴𝐴𝑜𝑜 𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑙𝑙𝐴𝐴 𝐼𝐼𝑡𝑡 &  𝑡𝑡ℎ𝑢𝑢𝑜𝑜 𝑖𝑖𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖𝑎𝑎𝑐𝑐𝑡𝑡𝑜𝑜 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑙𝑙𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝑡𝑡 
2.𝐸𝐸𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑙𝑙𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝑡𝑡 𝑝𝑝𝑖𝑖𝑙𝑙𝑒𝑒𝑖𝑖𝑝𝑝𝐴𝐴𝑜𝑜 𝑡𝑡ℎ𝐴𝐴 𝑖𝑖𝐴𝐴𝑤𝑤𝑎𝑎𝑖𝑖𝑝𝑝𝑜𝑜 𝑥𝑥𝑖𝑖,𝑡𝑡 𝜖𝜖 [0,1]𝑓𝑓𝑙𝑙𝑖𝑖 𝑡𝑡 𝜖𝜖 {1,𝑇𝑇} 𝑎𝑎𝐴𝐴𝑝𝑝  
     𝑖𝑖𝐴𝐴𝑤𝑤𝑎𝑎𝑖𝑖𝑝𝑝  𝑥𝑥𝑖𝑖,𝑡𝑡  
3.𝑂𝑂𝑂𝑂𝑜𝑜𝐴𝐴𝑖𝑖𝑒𝑒𝑖𝑖𝐴𝐴𝑙𝑙 𝑡𝑡ℎ𝑖𝑖𝑜𝑜 𝑖𝑖𝐴𝐴𝑤𝑤𝑎𝑎𝑖𝑖𝑝𝑝, 𝑥𝑥𝑖𝑖,𝑡𝑡, 𝑡𝑡ℎ𝐴𝐴 𝑎𝑎𝑙𝑙𝐴𝐴𝐴𝐴𝑡𝑡 𝑡𝑡𝑖𝑖𝑖𝑖𝐴𝐴𝑜𝑜 𝑡𝑡𝑙𝑙 𝑒𝑒𝑎𝑎𝑥𝑥𝑖𝑖𝑒𝑒𝑖𝑖𝑚𝑚𝐴𝐴 𝑡𝑡ℎ𝐴𝐴 

 𝑐𝑐𝑢𝑢𝑒𝑒𝑢𝑢𝑙𝑙𝑎𝑎𝑡𝑡𝑖𝑖𝑒𝑒𝐴𝐴 𝑖𝑖𝐴𝐴𝑤𝑤𝑎𝑎𝑖𝑖𝑝𝑝 𝑖𝑖. 𝐴𝐴.�𝑥𝑥𝐼𝐼𝑡𝑡,𝑡𝑡
𝑇𝑇

  𝑂𝑂𝑏𝑏 𝑡𝑡ℎ𝐴𝐴 𝑡𝑡𝑖𝑖𝑒𝑒𝐴𝐴 𝑜𝑜𝑡𝑡𝐴𝐴𝑝𝑝 𝑇𝑇 
Fig.1. The MAB problem 

For a general MAB, it is to be noted that the rewards could 
follow any distribution but are to be bounded by [0,1].An agent 
is tested to achieve a highest cumulative reward or lowest 
cumulative regret to be graded better. Imposing additional 
assumption on the generalized MAB problem will lead to a 
variant, of our interest, called the Stochastic Multi-Armed 
Bandit (SMAB). 

B. The Stochastic Multi-Armed Bandit (SMAB) 
In SMAB settings it is assumed that the reward 𝑥𝑥𝑡𝑡 follows a 

fixed distribution 𝑒𝑒𝑖𝑖𝑙𝑙𝐴𝐴 [0,1] unknown to the agent. The reward 
of each action 𝑖𝑖 is independent of the rewards it obtained from 
any other time horizon (or pull) and independent of rewards of 
other actions [7].This means that the rewards �𝑋𝑋𝑡𝑡𝑖𝑖�𝑖𝑖𝑖𝑖𝑖𝑖 are assumed to 
be i.i.d from 𝑒𝑒𝑖𝑖 and all the rewards of  𝐾𝐾 choices(arms) are also 
independent of each other. 

In addition to Stochastic settings, an adversarial setting[8] that 
exists for MABs which is not the setting for the algorithms studied in 
this work. 

C. Performance Measures for an SMAB 
In an SMAB (also for any MAB) setting, an algorithm is 

evaluated based on the cumulative reward or the cumulative 
regret obtained due to the agent’s decision-making processes 
over the time horizon. , regret ℛ is a measure of how far the 
performance of contended algorithm is compared to an oracle 
policy that knows how to pick the best possible action in every 
each time step 𝑖𝑖 in horizon ℋ.For all CMABs, regret ℛ is a 
central conceptual variable to be considered and concentrated 
towards obtaining a logarithmically changing regret over time 
horizon. During experimentation the regret ℛ�  is plotted against 
horizon ℋ so as to observe and compare with algorithms 
reported or contented against. 

An expected payoff regret or simply expected regret ℛ�  is 
defined as follows 

ℛ� = �� max
𝑖𝑖=1,2,…N

 𝐸𝐸�𝑋𝑋𝑡𝑡𝑖𝑖�� −�𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡

𝐻𝐻

𝑡𝑡=1

𝑇𝑇

𝑡𝑡=1

 

Thus ℛ�  is the difference between the payoff of an optimal 
arm as selected by an oracle policy (in expectation over the  
arm’s distribution) and the actual payoff obtained by the MAB 
policy in contention. Since in real time environment, the oracle 
policy might not be known in advance, ℛ�  happens to have 
significance only in simulated environments where the testing is 
done to evaluate the algorithm’s performance. 

III. THE 𝐴𝐴𝑓𝑓𝑓𝑓𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝑋𝑋 ALGORITHM 
The effSAMWMIX algorithm is based on SAMWMIX[2] 

which indeed is based on a variant of simulated annealing called 
Simulated Annealing with Multiplicative Weights(SAMW).The 
regret is calculated as given below. As mentioned earlier, the 
SAMWMIX and its variants use a ‘Soft-Maximum’ via a 
Boltzmann Exploration structure. Since the ‘Soft Maximum’ is 
encoded inside a probability vector, the generation of an arm’s 
index using this probability vector contributes to a 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝐾𝐾) 
complexity – which makes the algorithm very competitive if 𝐾𝐾, 
the number of available arms, happens to be large. This binds 
the finite sample regret which is the probability of choosing a 
wrong action in each pull.  

The effSAMWMIX algorithm chooses the arms by 
calculating and maintaining a vector 𝜙𝜙𝑡𝑡

𝑗𝑗 where 𝑗𝑗𝜖𝜖[1,𝐾𝐾] are 
the number of arms available and 𝑡𝑡𝜖𝜖[1,𝑇𝑇] is the time 
horizon. The 𝜙𝜙𝑡𝑡

𝑗𝑗 is given below. 

𝜙𝜙k+1
𝑗𝑗 = (1 − 𝛾𝛾𝑘𝑘)  

𝜙𝜙𝑘𝑘
𝑗𝑗  𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑘𝑘

𝚥𝚥 �

∑ 𝜙𝜙𝑘𝑘
𝑗𝑗  𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑘𝑘

𝚥𝚥 �𝑖𝑖
𝑗𝑗=1

  +
𝛾𝛾𝑘𝑘
𝑁𝑁

          (1) 

(1) is similar to (10) of [2] since it represents a Boltzmann 
exploration schema. The learning component which is the step-
size 𝛾𝛾𝑡𝑡  and the inverse temperature parameter is given below. 

𝛾𝛾𝑘𝑘 =
𝑁𝑁�4 + (𝑝𝑝 + 𝑝𝑝𝑘𝑘)�

𝑘𝑘(𝑝𝑝 + 𝑝𝑝𝑘𝑘)2 − (𝑝𝑝 + 𝑝𝑝𝑘𝑘 − 2𝑝𝑝2)                (2) 

𝜂𝜂𝑘𝑘 =
1

𝑁𝑁
𝛾𝛾𝑘𝑘

+ 1
𝑙𝑙𝑙𝑙𝑙𝑙�

1 + 𝑝𝑝 � 𝐴𝐴𝛾𝛾𝑘𝑘
+ 1�

2𝑁𝑁
𝛾𝛾𝑘𝑘

− 𝑝𝑝2
�                      (3) 

The construction of proof is based on the definition of an 
expected regret which is defined as the expected cumulative loss 
incurred due to not playing the best possible arm 𝑎𝑎𝑡𝑡∗ during the 
iteration 𝑡𝑡 where𝑡𝑡𝜖𝜖[1,𝑇𝑇].The calculation of the maximum 
expected regret is put below. 

Maximum Regret of MAB   = 𝑒𝑒𝑎𝑎𝑥𝑥
1≤𝑗𝑗≤𝑖𝑖

 𝐸𝐸[∑ (𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡)]𝑇𝑇

𝑡𝑡=1      

              =  𝐸𝐸[�(𝑋𝑋𝑡𝑡1 − 𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡)] 

𝑇𝑇

𝑡𝑡=1

 

              = ��𝐸𝐸�𝑋𝑋𝑡𝑡1 − 𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡��

𝑇𝑇

𝑡𝑡=1

 

                                = �𝐸𝐸�𝐸𝐸�𝑋𝑋𝑡𝑡1 − 𝑋𝑋𝑡𝑡
𝐼𝐼𝑡𝑡� / ℱ𝑡𝑡−1�

𝑇𝑇

𝑡𝑡=1
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             = �𝐸𝐸��Δj𝜙𝜙𝑡𝑡
𝑗𝑗

𝑖𝑖

𝑗𝑗=2

�
𝑇𝑇

𝑡𝑡=1

    

               = ���Δj𝐸𝐸[𝜙𝜙𝑡𝑡
𝑗𝑗]

𝑖𝑖

𝑗𝑗=2

�
𝑇𝑇

𝑡𝑡=1

    

 
Figure 2. Calculation of Maximum Expected Regret 

 
The proof for logarithmic regret is similar to that of 

SAMWMIX and thus can be documented similarly. Since 
∑ (∆𝑖𝑖/𝑝𝑝𝑇𝑇
𝑝𝑝=1 ) = log (𝑇𝑇), obtaining an upper bound of 𝑂𝑂 �1

𝑇𝑇
� on 

expectation 𝐸𝐸{𝜙𝜙𝑡𝑡𝑖𝑖} for any suboptimal arm implies a logarithmic 
regret in effSAMWMIX. From the following set of equations, 
we derive the value of 𝛾𝛾𝑘𝑘 which essentially differentiates the 
effSAMWMIX from SAMWMIX. 

 
By altering the Boltzmann exploration schema of 

SAMWMIX from  

𝜙𝜙𝑡𝑡+1
𝑗𝑗 = (1 − 𝛾𝛾𝑡𝑡)  

𝜙𝜙𝑡𝑡
𝑗𝑗  𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝑗𝑗  �

∑ 𝜙𝜙𝑡𝑡
𝑗𝑗  𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝑗𝑗  �𝑁𝑁
𝑗𝑗=1

  +
𝛾𝛾𝑡𝑡
𝑁𝑁

           

   
which is (10) of [2]  to that of effSAMWMIX which is 

  𝜙𝜙𝑡𝑡+1
𝑗𝑗 =   (1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �

𝑁𝑁
𝑗𝑗=1

  + 𝛾𝛾𝑡𝑡
𝑖𝑖

                 

where    𝜂𝜂𝑘𝑘 = 1
𝑁𝑁
𝛾𝛾𝑘𝑘
+1
𝑙𝑙𝑙𝑙𝑙𝑙 �

1+𝑝𝑝� 𝐴𝐴𝛾𝛾𝑘𝑘
+1�

2𝑁𝑁
𝛾𝛾𝑘𝑘
−𝑝𝑝2 �           

 
if   𝐾𝐾𝑝𝑝 = 𝑝𝑝,𝐶𝐶𝑝𝑝 = 𝑖𝑖

𝛾𝛾𝑝𝑝
+ 1 ,𝜎𝜎𝑝𝑝2 = 2 ∗ 𝑖𝑖

𝛾𝛾𝑝𝑝
− 𝑝𝑝2, 𝑡𝑡ℎ𝐴𝐴𝐴𝐴 

𝜂𝜂𝑝𝑝 =
1
𝐶𝐶𝑝𝑝

log�
1 + 𝐶𝐶𝑝𝑝𝐾𝐾𝑝𝑝

𝜎𝜎𝑝𝑝2
� 

The regret is defined as  ℛ� = ∑ �∑ Δj𝐸𝐸[𝜙𝜙𝑡𝑡
𝑗𝑗]𝑁𝑁

𝑗𝑗=2 �𝑇𝑇
𝑡𝑡=1     

But 𝜙𝜙𝑡𝑡+1
𝑗𝑗 = (1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �

𝑁𝑁
𝑗𝑗=1

  + 𝛾𝛾𝑡𝑡
𝑖𝑖

 

Thus ℛ� = ∑ �∑ Δ𝑗𝑗𝐸𝐸 ��1−𝛾𝛾𝑡𝑡� 𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝑗𝑗  
�

∑ 𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝑗𝑗  
�

𝑁𝑁
𝑗𝑗=1

+ 𝛾𝛾𝑡𝑡
𝑁𝑁

  
�𝑁𝑁

𝑗𝑗=2 �𝑇𝑇
𝑡𝑡=1     

             = ���Δ𝑗𝑗 𝐸𝐸 �(1− 𝛾𝛾𝑡𝑡) 
𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �𝑖𝑖

𝑗𝑗=1

  �
𝑖𝑖

𝑗𝑗=2

�
𝑇𝑇

𝑡𝑡=1

+  
𝛾𝛾𝑡𝑡
𝑁𝑁

   

 

Since   𝐴𝐴∑𝜂𝜂1𝑋𝑋𝑡𝑡1 � ≤   ∑ 𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �𝑖𝑖

𝑗𝑗=1  ,the following equation 
(4)  holds true. 

(1 − 𝛾𝛾𝑡𝑡) 
𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �𝑖𝑖

𝑗𝑗=1

+  
𝛾𝛾𝑡𝑡
𝑁𝑁

 ≤  (1 − 𝛾𝛾𝑡𝑡) 
𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

𝐴𝐴∑𝜂𝜂1𝑋𝑋𝑡𝑡1 � + 
𝛾𝛾𝑡𝑡
𝑁𝑁

   (4)    

Considering the following inequality  
 

 𝐴𝐴∑ 𝜂𝜂𝑘𝑘𝑋𝑋𝑘𝑘
𝚥𝚥 �𝐾𝐾−1

𝑘𝑘=1 ∗ 𝐴𝐴𝜂𝜂𝑘𝑘(𝑑𝑑𝑘𝑘)∗�𝑋𝑋𝑡𝑡
𝚥𝚥 �+𝑑𝑑𝑘𝑘�  ≤ ∑j=1

N 𝐴𝐴∑ 𝜂𝜂𝑘𝑘(𝑑𝑑𝑘𝑘)𝑋𝑋𝑘𝑘
𝚥𝚥 �𝐾𝐾

𝑘𝑘=1        (5) 
be true for every 𝑖𝑖 including 𝑖𝑖 = 1 𝑡𝑡𝑙𝑙 𝑁𝑁 and if 𝑎𝑎𝑘𝑘 is the winner 
arm in 𝑘𝑘𝑡𝑡ℎiteration, (5) can be written as follows 
 

𝐴𝐴∑ 𝜂𝜂𝑘𝑘𝑋𝑋𝑘𝑘
𝑎𝑎𝑘𝑘  �𝐾𝐾−1

𝑘𝑘=1 ∗ 𝐴𝐴𝜂𝜂𝑘𝑘(𝑑𝑑𝑘𝑘)∗�𝑋𝑋𝑡𝑡
𝑎𝑎𝑘𝑘  �+𝑑𝑑𝑘𝑘�  ≤ ∑j=1

N 𝐴𝐴∑ 𝜂𝜂𝑘𝑘(𝑑𝑑𝑘𝑘)𝑋𝑋𝑘𝑘
𝚥𝚥  �𝐾𝐾

𝑘𝑘=1     (6) 

Fetching 𝜂𝜂𝑝𝑝 from SAMWMIX [2] 

𝜂𝜂𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 = 1
𝐶𝐶𝑝𝑝

log �1+𝐶𝐶𝑝𝑝𝐾𝐾𝑝𝑝
𝜎𝜎𝑝𝑝2

�  where 𝑘𝑘𝑝𝑝 = 𝑝𝑝 

𝜂𝜂𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 =
1
𝐶𝐶𝑝𝑝

log�
1 + 𝐶𝐶𝑝𝑝𝑝𝑝
𝜎𝜎𝑝𝑝2

� 

 
Analogous to SAMWMIX we define 𝜂𝜂𝑝𝑝

𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 as 

𝜂𝜂𝑝𝑝
𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 = 1

𝐶𝐶𝑝𝑝
log �1+𝐶𝐶𝑝𝑝�𝑑𝑑+𝑑𝑑𝑝𝑝�

𝜎𝜎𝑝𝑝2
�                              (7) 

Getting the notations back incorporating 𝑝𝑝𝑘𝑘, 𝑖𝑖. 𝐴𝐴.  
 

𝜂𝜂𝑝𝑝
𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 = 𝜂𝜂𝑝𝑝�𝑝𝑝𝑝𝑝� , 𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝑒𝑒𝐴𝐴𝑡𝑡𝐴𝐴𝑖𝑖𝑖𝑖𝑚𝑚𝐴𝐴𝑝𝑝 𝑂𝑂𝑏𝑏 𝑝𝑝𝑘𝑘  

𝜂𝜂𝑝𝑝�𝑝𝑝𝑝𝑝� =
1
𝐶𝐶𝑝𝑝

log�
1 + 𝐶𝐶𝑝𝑝�𝑝𝑝 + 𝑝𝑝𝑝𝑝�

𝜎𝜎𝑝𝑝2
� 

 

𝜙𝜙𝑝𝑝+1
𝑗𝑗 = �1 − 𝛾𝛾𝑝𝑝� 𝐴𝐴

∑
−𝐾𝐾𝑝𝑝2

2𝜎𝜎2+𝐾𝐾𝑝𝑝𝐶𝐶𝑝𝑝
𝐾𝐾
𝑝𝑝=1   +

𝛾𝛾𝑡𝑡
𝑁𝑁

 
 
To obtain logarithmic regret, the summation term in 

exponent should be a logarithmically increasing entity. Hence 
we equate it to log𝐾𝐾 

�−
𝐾𝐾𝑝𝑝2

2𝜎𝜎2 + 𝐾𝐾𝑝𝑝𝐶𝐶𝑝𝑝

𝐾𝐾

𝑝𝑝=1

= − log𝐾𝐾 

 

which implies  that 
𝐾𝐾𝑝𝑝2

2𝜎𝜎2+𝐾𝐾𝑝𝑝𝐶𝐶𝑝𝑝
= 1

𝑘𝑘
                   (8) 

 
Since 𝐾𝐾𝑝𝑝 = (𝑝𝑝 + 𝑝𝑝𝑘𝑘),equation (8) is rewritten as  
 

(𝑝𝑝 + 𝑝𝑝𝑘𝑘)2

2(2𝑁𝑁
𝛾𝛾𝑘𝑘

− 𝑝𝑝2) + (𝑝𝑝 + 𝑝𝑝𝑘𝑘)(𝑁𝑁𝛾𝛾𝑘𝑘
+ 1)

=
1
𝑘𝑘

 

 

Thus 𝛾𝛾𝑘𝑘 = 𝑖𝑖�4+(𝑑𝑑+𝑑𝑑𝑘𝑘)�
𝑘𝑘(𝑑𝑑+𝑑𝑑𝑘𝑘)2−(𝑑𝑑+𝑑𝑑𝑘𝑘−2𝑑𝑑2)

 

 
Thus an exploration parameter 𝛾𝛾𝑘𝑘 = 𝑖𝑖�4+(𝑑𝑑+𝑑𝑑𝑘𝑘)�

𝑘𝑘(𝑑𝑑+𝑑𝑑𝑘𝑘)2−(𝑑𝑑+𝑑𝑑𝑘𝑘−2𝑑𝑑2)
 

will aid effSAMWMIX in achieving a logarithmic regret log𝑇𝑇 
over the horizon T. The pseudocode for effSAMWMIX 
algorithm is put below 
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Algorithm 1 effSAMWMIX SMAB algorithm 
Input : Rewards Vector 𝐺𝐺𝑡𝑡,set of Arms 𝑁𝑁,number of rounds 𝑇𝑇 
1. Using 𝐺𝐺𝑡𝑡 Calculate 𝑝𝑝=min ∆(𝜇𝜇1, 𝜇𝜇2 … . 𝜇𝜇𝑖𝑖) where 𝜇𝜇𝑖𝑖 is the 

reward mean of Arm 𝑖𝑖. 
2. Calculate  

a. 𝐶𝐶0 = 𝑁𝑁 + 1; 𝜎𝜎2 = 2 ∗ 𝑁𝑁;  
b. 𝜂𝜂0 = 1

𝐶𝐶0
log �1+𝐶𝐶𝑝𝑝∗𝑑𝑑

𝜎𝜎2
� 

c. 𝑜𝑜𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡𝐼𝐼𝑡𝑡𝐴𝐴𝑖𝑖 = ((4 + 𝑝𝑝) ∗ 𝑁𝑁 + 𝑝𝑝)/𝑝𝑝2 
3. 𝑓𝑓𝑙𝑙𝑖𝑖 𝑖𝑖 =  1, . . . ,𝑁𝑁 𝑝𝑝𝑙𝑙 

a. Obtain reward 𝑋𝑋𝑡𝑡=𝑖𝑖𝑖𝑖  

b. Initialize 𝜙𝜙𝑡𝑡𝑖𝑖  = 𝜂𝜂0 ∗ �
𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝐼𝐼𝑡𝑡𝑒𝑒𝑠𝑠

𝑖𝑖
� ∗ (𝑋𝑋𝑡𝑡=𝑖𝑖

𝑖𝑖

1
𝑁𝑁

) 

c. Initialize pull count for  𝑎𝑎𝑖𝑖𝑒𝑒 𝑎𝑎𝑖𝑖  𝑎𝑎𝑜𝑜 𝑝𝑝𝑖𝑖=1   
4. 𝑓𝑓𝑙𝑙𝑖𝑖 𝑡𝑡 = (𝑜𝑜𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡𝐼𝐼𝑡𝑡𝐴𝐴𝑖𝑖 + 1 + 𝑁𝑁), … , (𝑜𝑜𝑡𝑡𝑎𝑎𝑖𝑖𝑡𝑡𝐼𝐼𝑡𝑡𝐴𝐴𝑖𝑖 + 𝑇𝑇)𝑝𝑝𝑙𝑙 

a. Obtain random probability 𝑖𝑖 
b. Choose an arm 𝑖𝑖 as winner if ∑𝜙𝜙𝑡𝑡

𝑖𝑖  > 𝑖𝑖 and store 

reward 𝐺𝐺𝑡𝑡−𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝐼𝐼𝑡𝑡𝑒𝑒𝑠𝑠𝑖𝑖 = 𝑎𝑎𝑡𝑡∗ and normalize the reward 
using its probability 𝑋𝑋�=𝑎𝑎𝑡𝑡∗/𝜙𝜙𝑡𝑡𝑖𝑖   

c. Update 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖 + 1 
d. 𝑓𝑓𝑙𝑙𝑖𝑖 𝑝𝑝𝑡𝑡  =  1, … , 𝑡𝑡−𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝐼𝐼𝑡𝑡𝑒𝑒𝑠𝑠

𝑇𝑇−𝑖𝑖
𝑖𝑖𝐴𝐴 𝑜𝑜𝑡𝑡𝐴𝐴𝑝𝑝𝑜𝑜 𝑙𝑙𝑓𝑓 𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝 𝑝𝑝𝑙𝑙 

i. Calculate 𝑘𝑘𝑡𝑡 = 𝑝𝑝 + 𝑝𝑝𝑡𝑡; 
ii. 𝛾𝛾𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠𝑝𝑝 = ((4 + 𝑘𝑘𝑡𝑡) ∗ 𝑁𝑁 + 𝑘𝑘𝑡𝑡)/(𝑡𝑡 ∗ 𝑘𝑘𝑡𝑡2) 

iii. 𝐶𝐶𝑡𝑡 = � 𝑖𝑖
𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝

� + 1 and 𝜎𝜎𝑡𝑡𝑒𝑒𝑠𝑠𝑝𝑝
2 = 2 ∗ 𝑁𝑁/𝛾𝛾𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠𝑝𝑝 

iv.  𝜂𝜂𝑡𝑡 = 1
𝐶𝐶𝑡𝑡

log �1+𝐶𝐶𝑡𝑡∗𝑘𝑘𝑡𝑡
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝
2 � 

v. ∑𝜙𝜙𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠𝑝𝑝
𝑖𝑖  = ∑𝜙𝜙𝑡𝑡

𝑖𝑖 + 𝐴𝐴∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝑖𝑖  �

  

vi. If 𝐴𝐴∑𝜂𝜂𝑡𝑡∗(𝑑𝑑𝑡𝑡∗ 𝑋𝑋𝑡𝑡
𝚤𝚤) � + 𝜂𝜂𝑡𝑡∗(𝑑𝑑𝑡𝑡∗ 𝑋𝑋𝑡𝑡

𝑎𝑎𝚤𝚤) �
 > ∑𝜙𝜙𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠𝑝𝑝

𝑖𝑖   then  
assign 𝑝𝑝𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝 

e. Assign  
i. 𝐾𝐾𝑡𝑡 = 𝑝𝑝𝑡𝑡 + 𝑝𝑝𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒 

ii. 𝛾𝛾𝑡𝑡 = ((4 + 𝑘𝑘𝑡𝑡) ∗ 𝑁𝑁 + 𝑘𝑘𝑡𝑡)/(𝑡𝑡 ∗ 𝑘𝑘𝑡𝑡2) 
iii. 𝐶𝐶𝑡𝑡 = � 𝑖𝑖

𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝
�+ 1 and 𝜎𝜎𝑡𝑡2 = 2 ∗ 𝑁𝑁/𝛾𝛾𝑡𝑡𝑡𝑡𝑒𝑒𝑠𝑠𝑝𝑝 

iv. 𝜂𝜂𝑡𝑡 = 1
𝐶𝐶𝑡𝑡

log �1+𝐶𝐶𝑡𝑡𝐾𝐾𝑡𝑡
𝜎𝜎𝑡𝑡
2 � 

f. Now update 𝜙𝜙𝑡𝑡+1
𝑗𝑗  using (1) which is  

  𝜙𝜙𝑡𝑡+1
𝑗𝑗 =   (1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡

𝚥𝚥 �

∑ 𝑒𝑒∑𝜂𝜂𝑡𝑡𝑋𝑋𝑡𝑡
𝚥𝚥 �

𝑁𝑁
𝑗𝑗=1

  + 𝛾𝛾𝑡𝑡
𝑖𝑖

       

Output : 𝜙𝜙 vector 
 

IV. EMPIRICAL EVALUATION OF 𝐴𝐴𝑓𝑓𝑓𝑓𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝑋𝑋 
effSAMWMIX is currently being compared to the 

performance of KL-UCB and TS. We chose KL-UCB for that it 
is prominently cited and compared to in MAB literature. 
Similarly, TS is gaining prominence[9] in the scientific 
fraternity in this decade. Also, effSAMWMIX has performed 
better than its predecessors GO-SAMWMIXM and SAMWMIX 
which in turn has as superior performance over UCB1 algorithm. 
This work reports the performance of effSAMWMIX vis-à-vis 
to that of KL-UCB and TS over the following reward 
distributions. The main purpose of these numerical experiments 
using various reward distributions is to compare the 

performance in terms of cumulated regret and the number of 
times the arm with the best mean reward (best arm henceforth) 
is pulled. 

A. Customized Synthetic Distribution (CuSyn) 
It is known that the mean reward of any arm influences the 

decision making of an SMAB. The closer the mean rewards of 
the available arms, the difficult it should be for an SMAB 
algorithm to latch on to the best arm for that iteration. A 
Customized Synthetic Distribution (CuSyn) is designed with an 
input parameter that allows distributing the rewards of the arms 
so that the minimum reward mean’s difference between any two 
arms is controlled. For example, using 0.1 as a parameter, the 
arms’ reward distributions will be placed so that the closest of 
the arms will have their reward means differing only by 10%. 
This ensures control over the closeness of the arms and allows 
for stress testing the algorithm. 

B. A few other Reward distributions 
Taking clues from[10], reward distributions of the arms are 

set so that their means are in an exponential distribution or a 
Bernoulli distribution. The algorithms are tested with arms that 
follow a  Triangular Distribution [11] and a Normal distribution 
truncated to be bounded between [0,1] ( Truncated Normal 
Distribution henceforth). The results of the numerical 
experiments are put below. 

C. Design of the Experiment 
Numerical experiments are performed on effSAMWMIX, 

KL-UCB and Thompson Sampling(TS) algorithms using the 
computational software package MATLAB. All the 
distributions are to have rewards 𝑥𝑥�𝜖𝜖(0,1) and the rewards are 
i.i.d for all the five arms (𝐾𝐾 = 5) in consideration. The time 
horizon is set to be 2000 pulls (𝑇𝑇 = 2000) and each run of the 
code is called an experiment. 100 such experiments are 
conducted and the results are averaged to remove any 
randomness in the results. The results are put below when the 
rewards followed each of the distributions named below. 

TABLE I.  MEASURED CPU TIME FOR ALGORITHMS. 

CPU Time in 
milliseconds for 

each rewards 
Distribution 

Algorithm ( time in milliseconds) 

effSAMWMIX  KL-UCB Thompson 
Sampling 

CuSyn 66.6875 199.6875 363.4531 

Triangular 57.9844 195.9063 343.4531 

Truncated Normal 65.2031 201.8594 357.6094 

Bernoulli 66.5469 196.2344 353.9844 

Poisson 65.2656 201.1719 360.0156 

Exponential 67.5313 200.5156 360.5313 

 
 

1) Customized Synthetic(CuSyn) Distribution 
The cumulative regret accumulated by effSAMWMIX is the 
lowest as shown in Fig.1. effSAMWMIX has chosen the best 
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possible arm the most number of times (see Fig.2.) and thus 
aggregated to a lower regret compared to KL-UCB and TS.  
 

 
Fig. 1. Comparison of cumulative regrets when the rewards followed a 

Customized Synthetic Distribution. 

 Also, the average time taken, to run an experiment with 
effSAMWMIX is about 67millseconds which is the lowest (See 
Table.1). Thus effSAMWMIX is both effective (lower regret) 
and efficient (lower computation time) of the three algorithms. 

 
Fig. 2. Comparison of best arm’s Pull Count  when the rewards followed a 

Customized Synthetic Distribution. 

 
2) Triangular Distribution 

effSAMWMIX performed better than the other two 
algorithms both in terms of efficiency and effectiveness. The 
cumulative regret accumulated by effSAMWMIX is the lowest 
as shown in Fig.3.  

 
Fig. 3. Comparison of cumulative regrets when the rewards followed a 

Triangular Distribution 

effSAMWMIX has chosen the best possible arm the most 
number of times (see Fig.4.) and thus aggregated to a lower 
regret compared to KL-UCB and TS. Here also the average time 
taken to run an experiment with effSAMWMIX is about 58 

milliseconds which is the lowest (See Table.1) of that of the 
three algorithms. 

 
Fig. 4. Comparison of best arm’s Pull Count  when the rewards followed a 

Triangular Distribution. 

 
3) Truncated Normal Distribution 

effSAMWMIX’s performance is superior to other two 
algorithms when the mean of arms’ rewards followed a 
Truncated Normal Distribution. 

 

 
Fig. 5. Comparison of cumulative regrets when the rewards followed a 

Truncated Normal Distribution 

effSAMWMIX is superior both in effectiveness and 
efficiency (see Fig.5 & Fig 6) 

 
Fig. 6. Comparison of best arm’s Pull Count  when the rewards followed a 

Truncated Normal Distribution. 
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4) Bernoulli Distribution 

 
Fig. 7. Comparison of cumulative regrets when the rewards followed a 

Bernoulli Distribution 

When the mean of arms’ rewards followed a Bernoulli 
distribution the performance results are favorable to 
effSAMWMIX both of effectiveness and efficiency (see Fig.7 
& Fig 8) 

 
Fig. 8. Comparison of best arm’s Pull Count  when the rewards followed a 

Bernoulli Distribution. 

5) Poisson Distribution 
effSAMWMIX performed better than the other two 

algorithms in terms of time efficiency. 

 
Fig. 9. Comparison of cumulative regrets when the rewards followed a 

Poisson  Distribution 

TS has performed better than both KL-UCB and 
effSAMWMIX (see Fig.1 & Fig.2.) even though TS’s time 
efficiency is the lowest of the three (see Table .1.). 

 
Fig. 10. Comparison of best arm’s Pull Count  when the rewards followed a P 

Distribution. 

6) Exponential Distribution 
The time efficiency of effSAMWMIX is still the best among 

the algorithms in comparison but the regret of KL-UCB is the 
lowest.  

 
Fig. 11. Comparison of cumulative regrets when the rewards followed an 

Exponential Distribution 

While effSAMWMIX performed with a regret lower than 
that of TS, KL-UCB has the best regret when the rewards 
followed an Exponential distribution. 

 
Fig. 12. Comparison of best arm’s Pull Count  when the rewards followed an 

Exponential Distribution. 

V. CONCLUSIONS AND FUTURE DIRECTIONS 
 

The proposed SMAB algorithm effSAMWMIX is compared 
with the KL-UCB and Thompson Sampling MAB algorithms. 
The tests are run when the available arms follow the various 
distributions mentioned in the preceding sections. In all the 
cases, effSAMWMIX achieved a better time efficiency than 
those in comparison. Except for when the arms’ rewards 
followed either an Exponential distribution or a Poisson 
distribution, effSAMWMIX outperformed KL-UCB and TS in 
terms of effectiveness i.e. with a minimum of the cumulative 
regret achieved over the horizon. In the case when the arms’ 
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rewards followed an exponential distribution, KL-UCB 
achieved the lowest regret while effSAMWMIX ranked second. 
And in the Poisson distribution case, effSAMWMIX performed 
next to Thompson Sampling SMAB. 

The effSAMWMIX obtains a 𝑙𝑙𝑙𝑙𝑙𝑙 regret which is a desirable 
property for an SMAB algorithm. Also effSAMWMIX has a fast 

execution time and has the best efficiency among the three 
algorithms over all the cases in discussion. The authors intend to 
check the applicability of this algorithm by extending it to 
incorporate contextual information so as to address the explore-
exploit problems that are common in any real-world business 
environment like that of a News article recommendation or cold-
start problems in ecommerce domain.  
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