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Abstract

An aim of Ethico-Optimal clinical trials of drugs in Phase III is to randomly
allocate a new drug (ND) to patients in the sample, but with a greater fraction
being administered ND if doing so is statistically justified. Such an adaptation
is not possible in static trials designed with a sample size N in which approx-
imately half the patients would receive the current drug or standard of care
(SOC), despite evidence within the trial that ND is efficacious. We adapt a
canonical stochastic multi-armed bandit algorithm named UCBI1 to a clinical
trials setting and analyse the resulting Type-2 error (8, as also minimum sam-
ple size N required by such a trial for a certain 3 level. The difference in our
proposal is not just in the allocation rule that applies to patients or volunteers
in the trial, but also in the inference rule to decide if null hypothesis can be
rejected. We also present simulations to establish that the ethical properties of
such a trial are higher, both to verify our analysis and demonstrate an empirical
advantage when compared to 2 existing methods. In these simulations, we also
propose and demonstrate a device to achieve low or comparable Type-1 error «
vis-a-vis existing methods.

1. Introduction

We first introduce the stochastic multi-armed bandit (SMAB) problem from
statistical learning by means of a simple algorithm designed to solve the problem.
A stochastic multi-armed bandit problem setting has K arms or levers, each
producing an outcome with mean reward {uk}ff:l, arranged such that p; >
tr+1. After pulling each of these K arms in the first K rounds, the single
player is permitted to pull any one of these K arms in each succeeding round
K +1<t< N, with each pull yielding a reward X; € [0, 1]. Note here that the
random variable X; belongs to probabilty distribution function F,, with support
over [0,1], where a; € {a',a?, ...,a’} is the arm or action chosen to be pulled at
t. Also note that F(X;) = pg,, with X; being used to update empirical means
{X’f}ﬁ;l that the player maintains for each arm a*. If a; = a*, then empirical
mean X/ is updated as follows: sf := sF | + 1, followed by X[ := W
t
The quantity s is the count of pulls of arm  till (and including) ¢, and the
information {sf}£ | is also retained by the player as she goes to round ¢ + 1.
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A common and efficient algorithm for the SMAB algorithm is UCB1 (Upper
Confidence Bound variant 1) [1] which infers a;;1 as follows:

2log(t)
st

1.

ok
a = arg max {X/ +
t+1 glngK{ t

UCBL is a logarithmic regret SMAB algorithm, in that it has been established:

log(N §
< 8%2)4_(14-%)7fork>1,f0rallN>81%gN)» (1)

where A = p; — po. Such an assurance indicates that only O(logT) of T
opportunities to pull arms were lost to the sub-optimal choice a*, k > 1.

In a simple 2—arm binary-response Phase 3 clinical trial for a new drug (ND),
a sample size N of patients with a particular condition is decided using certain
measurements made in the preceding Phase 2 trials. A key input into deciding
N is the statistical significance required in the Phase 3 trial’s conclusion, most
notably the clinical trial’s Type-1 error «. This error is the probability of
recommending ND when said drug’s performance is not statistically different
from current standard of care (SOC) or placebo. In a randomized controlled
trial, which we call static clincal trial alternatingly, roughly % patients are
administered ND, whilst the other half are administered SOC. This is done
in such a way that patients do not know and cannot reliably infer which of
the 2 drugs, a' or a?, they have received. It is considered ethical within such
a trial to administer more number of patients with the new drug if there is
statistical evidence till that point in the trial of better outcomes. Such ethico-
optimal trials have been investigated in [2] and in predecessor publications.
If we assume K = 2 in the earlier description of UCBI, then being able to
observe the outcome X; of administering drug a; to the t—th patient helps decide
a¢4+1. Further, the new drug likely has the greater mean outcome p1 > po, as
observed by the investigators in a Phase 2 trial, and hence from UCB1’s analysis
s3; = O(log(N)). The size of the trial can be set to have N subjects, such that

E(sy)

. , 8log(N')
N = nin st. N >2x [T1 (2)
Then, the number of patients administered SOC would be O(log(N)), a quantity
with promise of being lower than the % in a static clinical trial. Our aim is to
employ a variant of UCB1 - UCB1-MPA described below - as the basic unit of
generic bandit-based clinical trial algorithms which we call BBECT.
We next describe in greater detail, from [3], the bandit-based recommenda-
tion algorithm UCB1-MPA (Most Played Arm):

alog(t)
s

}.

a1 = argk§?§}{Xf+

The method to allocate the (t + 1)—th arm is similar to UCBI1, except for the
constant « in place of 2. However, at the end of N pulls, UCB1-MPA also



recommends as the best therapy the arm a*x = arg;_; , max{sk }. This also
termed as inference in a statistical trial, which is usally performed by con-
structing values such as Z-statistic and looking up tables. UCB1-MPA modifies
UCBL’s regret expression to derive an upper-bound on the probability that a?
(SOC) would be recommended in place of a'! (ND). Such a probability would
thus be the Type-2 error f of the SMAB-based clinical trial: the probability
that SOC will be recommended despite a statistically significant difference be-
tween ND and SOC. However, there appears to be no direct way to assess the
Type-1 error except by simulating a high number of clinical trials where A is
set to 0. UCB1-MPA currently uses the % threshold to decide which of the 2
drugs to recommend, but with A = 0 such an outcome would be noisy between
simulations. A further modification to UCB1-MPA can be thought of such that
a' is recommended only if it is used for a larger fraction of the N pulls, e.g. as
the allocation of 60% of the N subjects in the trial. Such a modification would
also help to capture the analogous conclusion in clinical trials where there is
insufficient information to reject the null hypothesis.

Note, however, that N in (2) above is typically much larger than the N
recommended by Z-statistic based methods used in static clinical trials. It
is clarified here that A = py — o is an approximate quantity known to the
clinical trial investigators on account of Phase-2 findings, that precede Phase-3
for which BBECT is being proposed. An example here is that for A = 0.2,
the lowest possible N if using native UCB1 is 3233. Here, by native UCBI1
we mean the UCBI1 algorithm without the much lower N our proof technique
allows to calculate. The N calculated from formula in [4], as required for static
binary response clinical trials, is s.t. N = 326. In Section 2 below, we describe
BBECT using UCB1-MPA with a proof that obtains an N much lower than in
the proof of UCB1-MPA itself. We will also explain the formula for NV required in
static clinical trials later in Section 2. BBECT with UCB-1 is also comparable
with binary-response static clinical trials, and has the advantage that more
subjects obtain the ND. Further, in Section 3, we run a series of experiments
with BBECT based on UCB1-MPA to compare with both static clinical trials
and ethico-optimal clinical trials.

As the central module in BBECT, there also are other bandit algorithms
apart from UCB1 that have various advantages:

« relaxation of X; € [0, 1] can take place, such algorithms are called "heavy-
tailed bandit’ algorithms, and

o regret quantity s can be lower due to different scaling constants and
offsets, but are still O(log(N)).

We have, however, chosen UCB1’s variant UCB1-MPA as the module for pro-
posed BBECT due to UCBI being a canonical and easy-to-analyse SMAB al-
gorithm. Indeed, in recent work such as [5] forward-looking multi-armed bandit
algorithms have been drafted for clinical trials. Such algorithms calculate in-
dices at each step of the trial, also involving information such as number of
enrolled trial participants left, to decide the allocation of patient one or the



other arm of the trial. However, the work there deals with continuous and
normally-distributed outcomes, assumes a prior distribution for parameters of
both arms in the trial, and also has a worse tradeoff of trial’s power vis-a-vis
ethical outcome. When using BBECT with UCB1-MPA, the sample size N can
be calculated in advance based on f required (in that sense it is not myopic
as defined by [5]), and does not require any priors other than an estimate of
A. Note also the theoretical formulation of regret in the Gittins Index method
[6, (17)] where regret in N steps is greater than 152 - log N, an unfavourable

scale coefficient compared to (1) above. The substitution for this is as fol-

’1 . 2
lows: A+128]og(2N?)+21-A[3Z log(4N?)] + 10N - < (log N—C\l,(fJf(NA ))7 where

") log N

we neglect the last term in our calculation. We thus get (256+21‘64z20c
and hence the assumption of % -log N earlier. In [7], an improved UCB1
named ‘Optimally-Confident UCB’ is presented whose coefficients of regret are
difficult to compare directly. However, it is observed there empirically that a
Gittins-index -based strategy is the winner in regret terms among a large set
of algorithms for small horizons e.g. N < 1000. An original investigation us-
ing bandit algorithms in binary response trials, that identifies multiple ethical
criteria, was performed in [8].

Even within Management research literature, a shift from quantitative ex-
periments to bandit-based adaptive experiments is being proposed in [9]. The
work in [9] does not propose deriving a sample size for any particular ban-
dit approach (though it employs Thompson sampling bandit). Further, as an
illustration, a large N in the simulated trial in [9] results in an Efficient Alloca-
tion Proportion - i.e. the fraction of subjects randomized to the better therapy
- of 83%. Our algorithm BBECT with UCB1-MPA achieves 80% for even the
1—st percentile of outcomes from 10, 000 simulations. The publication, however,
makes several valid points about Management literature requiring to shift from
‘fixed and balanced’ randomization to more ‘exploration-exploitation’ methods,
at least in sequential trials.

2. Proof of BBECT regret in recommended action

An outline of UCB’s proof of logarithmic regret (Theorem 1 in [1]) would
serve as a useful illustration. The proof there requires that at least one of the
following 3 events occur at an index t < N:

X < p—d
X; > p+q
po +2¢; > . (3)

The probability of these 3 events forms the upper bound for the probability of
the event {X} + ¢ < X? + ¢?}, which in turn indicates that at index ¢ + 1
the suboptimal arm 2 was pulled. Notice that the event in (3) does not occur if

52 > 8127%(” due to the form of ¢? = %’i(t). It is thus sufficient if s? > BI%QN).

t



Also, by the Chernoff-Hoeffding concentration inequality, P(X} < u! —¢}) <
e~25¢(ct)” = =% The same holds for P(X2 > p? + ¢2) above.

Theorem 1. For each § € (0,1), 3Ly and N such that N > 2Ly, Ly =
2 N — —
w, where 1o < 1, s.1. Zi\’:LOH P{X} +cl <X?+c2y<1-p

Proof. We begin with a modification to obtain a more favourable condition on
s? above:

X< ptme - (4)
D (5)
po+ (re+ 16 >+ ae. (6)

Just as the event (3) above, event (6) requires to be ruled out for s? exceeding
a certain threshold. The following conditions on x; and r; result:

1 —p2 > —xel + (ry 4+ 1)c? where, we solve

[2logt 2logt
A = —x % +(rs+1) gf as a sufficient condition.
¢ i

2(rg + 1)?log N

In the above, S? =

A2
2 1)2log N
S} = t-— Hro+1)"log N and choose an 79 s.t.
A2
2(rp + 1)%log N 8log N
AZ < Az

Now notice from (4)-(5) that we can place similar concentration conditions for
both X! and X? as in the original UCB1. Thus, we set the constraint that

1 — x; = 1, and obtain the solution:
2 log(t)
ro+1'\ log(N)

2log(t) 41 log(t)
tA2—2(1470)? log(N) ro+1\ log(N)

1+

Ty =

Further Ly = W. Notice that Chernoff-Hoeffding bound can be

applied as follows: P(X? < p?+ric?) < e 2i(nel)’ = g-22rilogt Ty
2
ther, the resultant value is (e=*1°8%)"*. Use x;, 7, to obtain N such that

EiV:LOH 2t=47% < 1— B, where 8 is the desired power of the statistical test. [

For example, we obtain N = 668 with Ly = 334 (corresponding to ro =
0.013) when we input 8 = 0.9 and A = 0.2. We have assumed that the process
{X}} is an empirical mean of s} events of type {0,1} with Bernoulli parameter
p1. For the static clinical test, there exists a combination p; = 0.6, po = 0.4,
for which the N = 326 obtained is much lesser. Yet, we will demonstrate



using simulation that treatment failures in BBECT are lower (alternatively,
efficient allocation proportion for BBECT is superior). A grid search for rq for
each possible value of A (with 8 = 0.9 employed) yields value of N suited to
BBECT using UCB1-MPA. These values are compared below in Table 1 for
BBECT versus static clinical trials, where the maximum possible value of N
over varied p;, pe pairs is recorded, s.t. p; — ps = A. We use the formula
for hypothesis testing applicable to settings of dichotomous outcomes and 2
independent samples, as given in [4]. In practice, BBECT using UCB1-MPA

A N for BBECT (8 =0.9) N in static trial (3 =0.9, 1 — a = 0.99)

0.1 3222 1302
0.15 1290 578
0.2 668 326
0.25 400 208
0.3 262 145
0.35 184 107
0.4 134 82

0.45 102 65

0.5 80 53

Table 1: Minimum sample size required for power 8 = 0.9

will also be more ethical due to the larger number of patients allocated to ND,
i.e. the arm with efficacy p;. Note an important difference above compared to
UCB1’s proof [1, (6)] where the following derivation is used:

sy=t—(Lo+1)
Lo+ Z S X!+ < XP+lst st}

t>Lo+1 si=1,s2=t—s!}

=
3
N

St—t L()Jrl)
E(T;(N)) < Lo+ Z > P{X! < —cflst}
t>Lo+1 s;=1,s2=t—s}
+ P{X-Q_ 2}

St_t (L0+1)
E(Ty(N)) < Lo+ Z Z 2671 < Lo +2((3),

t>Lo+1sl=1,s2=t—s}

Where ( is the Reimannian zeta function. Note in the above that, since it is
a conditional probability, P{X} < u; —ct|st} < 2t=* . P(s}). Hence we may
write the above without conditioning on s}, s? values to obtain a more compact
expression. This change allows us a low Ly and a suitable N > 2L, such that
adverse probability is bounded by a small 1 — 5:

B(s%) < Lo+ Z {X}! +cef < X2+
t>Lo+1



It is useful to reiterate what Theorem 1 implies: suppose that the first L
subjects are allocated to B, followed by which 1 subject is allocated to A. Then,
the probability of even 1 more subject from the remaining N — (Lo + 1) subjects
being allocated to arm B is less than  if BBECT with UCB1-MPA is used.

A note about calculation of N for static trial, [4], is also required here for
the sake of completeness. The minimum sample size IV is calculated based on a
basic quantity named ‘effect size’ E(p1,p2):

E(p1,p2) = b2 where,
p(1—p)
_ b1t p
P T
z1 +ZB 2
N = | ==« 7°
’— (E(p17p2)> —‘

The maximum N over a fine grid of possible (p1,p2), for each A, has been
calculated and placed in the third column of Table 1 above. The N calculated
in [10] for the comparisons below (e.g. Tables 4, 5) appear to be higher but the
authors do not point there to any formula to infer N.

3. BBECT compared to Static and Ethico-Optimal Clinical trials

We implemented a simulation with 100,000 trials where Bernoulli parame-
ters p1, pe2 were chosen randomly from (0,1) and p; — p2 = A, with A set to
0.2. The percentile values for number of patients in each trial, from a total
of 668, that were allotted to treatment represented by p; were captured in the
simulations. These are given in Table 2. This indicates that in 99% of the
simulated BBECT runs, 73% or more of the patients were allocated to ND.
Similarly, In 99% of the simulated BBECT runs where the effective A is such
that A € {0.2,0.3}, 77% or more of the patients were allocated to ND. This
experiment models situations where A is not known accurately, but for inferring
N it is sufficient to know a d such that A > d Note also how the ethical outcome
is achieved: consider the 10—th percentile mark when A = 0.2, implying 90% of
simulations have higher allocations to ND. We choose this level since the power
of the test as designed according to Theorem 1 above is also pegged at 90%. For
this particular level, reading off the table, note that 668 — 529 = 139 is less than
0.5 x 326 = 163, where N = 326 is the maximum static trial size N for A = 0.2
from Table 1. It may similarly be useful to compare the difference between N
and the 10—th percentile level for each A, with % of a static trial, to verify the
efficacy of BBECT with UCB1-MPA as a technique. This is done in Table 3,
where notice the advantage for BBECT using UCB1-MPA for all A > 0.1.



Percentile p; —ps =0.2, p1,p2 € (0,1) p1 —pa = A, s.t. A €[0.2,0.3]
1 493 518
5 517 542
10 529 553
50 564 587
90 593 612
95 601 618
99 615 629

Table 2: Percentile threshold allotted to ND under BBECT using UCB1-MPA

A 10—th percentile of allocations to SOC (using BBECT) % from Table 1
0.10 658 651
0.15 267 289
0.20 139 163
0.25 84 104
0.30 55 73
0.35 39 54
0.40 28 41
0.45 22 33
0.50 17 27

Table 3: Allocation to SOC under BBECT using UCB1-MPA

We next tried a simulation with 1,000,000 trials to estimate the level of
significance «, often called the p—value of the test, by turning A = 0.0 and
modifying the algorithm slightly. We set NV = 668 using Table 1, but set the
criterion that ND would be declared as the better therapy - i.e. null hypothesis
rejected - only if patients allotted to it exceed 60%. It is important to note
here that situations where A = 0 were handled differently. The p4 used in the
simulation was pg + 0.05 (with probab. 0.5), or alternatively pp := pa — 0.05
(with probab. 0.5). In none of the experiments was the expected response of
either SOC or ND required, neither was information about variability.

However, the BBECT algorithm is distribution-dependent in the sense that

information about approximate Aé,ul — po is still required. Our simulations
compare BBECT using UCB1-MPA within the setting of [10] which proposes
an optimal adaptive rule for binary response trials. Taking A = pg — pa, the
situations compared are those where significance of trial (when A = 0) as well
as power of trial (A > 0) is observed over 1 million simulations. Notice in Table
4 below that the ’error rate’ when A > 0 is better than the optimal adaptive
rule, signifying more power than the 90% for which the optimal adaptive rule
was designed. It is also the case that significance calculated empirically from
BBECT simulations when A = 0 is such that Type-1 error stays below 5%.
Note that the N in these experiments - where power observed is more than 95%



- happens to be even lower than N calculated analytically for 90% power in
Table 1.

Further, the BBECT algorithm also has lower ’treatment failure’, i.e. a
lesser number of subjects who did not recover, irrespective of whether they were
allocated to the A or B arms. Table 5 presents the number of treatment failures
with standard deviation (SD). The SD metric is observed as being higher in some
pairs when BBECT with UCB1-MPA is employed. Note one deviation in Table
5, the last entry, which compares the best proposed algorithm in [5] viz. the
Forward-Looking Gittins Index method (FLGI), with block size b = 1. While
FLGI has a very favourable treatment failure rate compared to BBECT, the
high standard deviation and lower power (0.33 as obtained from [5] compared
to 0.96) are also worthy of note.

Also compare these results with the extensive simulation in [11] where ‘Type-
1 error inflation’ for bandit-based methods occurs, incl. UCB1. This inflation
is similar to the outcome we would obtain if we employed the original MPA
rule of declaring arm as winner if more than 50% of pulls correspond to it.
Notice also that C, there has been tuned with simulations to suit the bandit
algorithm, just as our mark of 60% is obtained here using simulations. For
example, the standard C,, would be 1.645, but is adjusted to 2.068, 1.867, 1.701
([11, Table 1]) for the algorithms UCBI, KL-UCB1 and Thomson Sampling,
respectively. Notice also the power values of our algorithm in the lower half
of Table 4 (all above 95%) whilst power values in [11, Table 1], even for the
bandit methods, are less than 90%. Of these methods, KL-UCB has the best
balance of statistical test’s power and efficient allocation proportion (77% and
82%, respectively) both of which are unfavourable compared to our figures.

We also present the comparison with work in [12] where Bayesian bandit
clinical trial algorithms are introduced for the Bernoulli case, like ours. There
are 3 algorithms introduced there, using Gittins Index (GI), Whittle Index (WT),
and a Randomized Gittins index (RGI), all having the advantage of being ‘non-
myopic’, i.e. sensitive to the horizon left for the trial. The work compares p of
0.3 and pp of 0.5 after deriving N = 148 for the static fixed allocation clinical
trial. The BBECT figure for expected number of successes (ENS) was 65.95
at this N, compared to the approximately 70 (ratio % = 0.473) that GI and
WI were able to achieve. However, note that statistical power of the GI, WI
methods was very low, at 0.3 — 0.4 compared to values greater than 90% for
BBECT. If using N = 588 in this setting for BBECT, where N is calculated
from Theorem 1 for power setting 1 — 8 = 0.8, we have an ENS of 274.21 which
at 0.491 exceeds the ratio that GI and WI achieve. Type-1 error evaluated using
the method of perturbing p4 or pp by 0.05 yields 0.056 for N = 148, whilst it is
alow 0.01 for N = 558 (within limits for design criterion of 5%). Also compare
the lower simulation-based N obtained to achieve or exceed the required power
of 80% yet remain near the Type-1 error of 5%. This is a lower N = 120, whilst
the ENS ratio obtained is however worse at 0.44.



DA PB N BBECT with UCB1-MPA  Optimal Adaptive rule
0.10 0.10 200 0.00 0.04

0.30 0.30 200 0.04 0.05

0.50 0.50 200 0.05 0.04

0.70  0.70 200 0.04 0.04

0.90 0.90 200 0.00 0.04

0.10 0.20 526 0.96 0.89

0.10 030 162 0.98 0.89

0.10 040 82 0.99 0.89

0.40 0.60 254 0.99 0.89

0.60 090 82 0.98 0.90

0.70 090 162 0.98 0.91

0.80 0.90 526 0.96 0.90

0.0 0.545 116 1.00 0.77 (KL-UCB)

Table 4: Table comparing error-rate in [10] against BBECT with UCB1-MPA

DA DB N  BBECT with UCB1-MPA  Optimal Adaptive rule
0.10 0.20 526 436.4 (9.6) 443 (8.5)

0.10 0.30 162 122.0 (6.2) 126.2 (5.4)

0.10 0.40 82 55.2 (4.8) 58.5 (4.2)

0.40 0.60 254 113.3 (8.6) 124.4 (7.8)

0.60 090 82 14.1 (3.0) 19.3 (3.7)

0.70 090 162 24.7 (4.2) 31.5 (4.8)

0.80 0.90 526 68.1 (7.4) 78.3 (8.1)

0.0 0.545 116 38.7 (4.7) 71.11 (11.6)

4. Future Directions

The N proposed by Theorem 1 is higher when compared to a static clinical
trial, and this requires registering more volunteers which is a challenge if the
condition is rare. However, the Hoeffding bound used above produces an upper
limit and alternative bounds exist whereby if py — pp > A and pa —pp < d
are both known, then the bound is tighter. A closed form expression for the
Type-1 error, even under the assumption of ‘region of indifference’ viz. a minor

Table 5: Treatment failures in [10] against proposed BBECT

difference between p4 and pg, would also be welcome for practitioners.
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