
Working Paper

IIMK/WPS/536/ITS/2022/07

March 2022

Games with strategic decision making: Poker algorithms and an application
to Tic-tac-toe with accelerating modifications

Lija Chandran T V1

Mohammed Shahid Abdulla2

1Independent Researcher, Information Technology and Systems, Email: lijachandran@gmail.com
2Associate Professor, Information Technology and Systems, Indian Institute of Management, Kozhikode, IIMK Campus
PO, Kunnamangalam, Kozhikode, Kerala 673570, India; Email: shahid@iimk.ac.in, Phone Number (+91) 495 – 2809254

Games with strategic decision making: Poker algorithms and an application to
Tic-tac-toe with accelerating modifications

Abstract

This paper focuses on the games that aid in making strategic decisions, especially the
game of Poker and different computer poker programs/bots. We have here an overview of
some of the significant Poker computer programs which have solved or have essentially
solved different variants of the game of Poker till date. As a part of comprehending the
algorithms used to solve these games programmatically, we have experimented and
attempted to implement Counterfactual Regret Minimization (CFR) equilibrium finding
algorithm to solve the two player zero sum game 3x3 Tic-tac-toe. A variant of the
algorithm has a speedup upto a factor of 20. The source code of our CFR implementation
is available to download from a public code repository.

1. Introduction

Games like Chess, Poker, Bridge etc claim to improve our decision making skill sets that
aid in our personal and professional life. There are courses being offered in business
schools like Game of Poker and Game Theory that teaches the strategy involved in
playing these games, so that these strategies can be used when a real life business
decision is to be made. Compared to a game like Poker, however, a game like Chess has a
situation where the players can see the board and moves of each player: indeed these
kinds of games where all the information about the game is known to all the players are
categorized as perfect information games. Whereas, games like Poker are categorized as
imperfect information games since it involves hidden cards and thus all the players do not
get to know all the information about the game[1]. The decision making involved in these
two categories of games are also dependent on these known and hidden information sets.
Imperfect information game like Poker is considered more relevant when it comes to
decision making in real life, as we are not given all the facts and information in real life
when a decision is to be made[2]. Imperfect information games can be translated into
many real world scenarios like negotiations, auctions, business strategy and security
interactions[18].

Solving perfect and imperfect information games has been an interesting and challenging
area of research for computer science and the emerging field of artificial intelligence also.
Two player zero-sum games with perfect information like Chess, Go, Tic-tac-toe and

Checkers are some of the best studied games and are solved using exhaustive search
techniques and algorithms. A computer program called Chinook developed by
researchers at University of Alberta to play the game of Checkers became the first
computer program to win the official world championship for a game of skill in 1994[3].
Optimal action or equilibrium in sequential perfect information games can be found using
a method called backward induction[4]. Unlike perfect information games, solving
imperfect information games is much more challenging - an early fact pointed out by
computing and algorithms pioneer John von Neumann. More advanced algorithms like
Counterfactual Regret Minimization (CFR), Excessive Gap Technique (EGT), Depth
Limit etc. are used in solving the imperfect information games, wherever a solution is
possible. The game of Poker has also been a part of this study by various universities and
the poker bot called Cepheus developed by Computer Poker Research Group at the
University of Alberta in 2015, became the first program to “essentially weakly solve” the
Heads-up Limit Texas Hold’em poker[5]. Computer poker player Pluribus developed by
Facebook’s AI Lab and Carnegie Mellon University in 2019 plays the No-limit Texas
Hold’em poker and became the first bot to beat humans in a complex multiplayer
competition[6].

2. Poker and Managerial Skills

Poker is said to have an influence on the decision making skills of people, as Poker is an
imperfect information game where the players have to make decisions based on both the
information that is available and hidden from them. This more or less resembles the
decision making involved in our real life and also business, with its attendant threat of
multi-factor competition. Let’s see some of the skills that product/project managers can
learn from the game of poker[7][8][9]:

➢ Risk Management - As Poker is an imperfect information game, there is always a
risk associated with every move you are going to make. A good player should
always be aware when to raise, fold and when to go all-in. Likewise, managers
should also have clarity on risks they might encounter while planning for the
project or release.

➢ Observing Patterns - Poker involves multiple rounds of betting and each player in
the table has their own style of playing. The players observe the moves of other
players on the table and learn the pattern of each player’s behavior. Reading
pattern of each player can help us to make our own moves. In the same way, if the

manager can deduce the pattern from the available metrics like performance of a
product in the market, most and least used features in a product or competitors’
moves can help to plan the next product release better.

➢ Resource Management - In poker, we know our private cards, community cards
and the amount of money we have to play the hand. We should be able to calculate
and plan while calling, raising the bet or going all-in in each round of betting.
Similarly, a product manager should plan and allocate the resources (team
members, fund, time, assets) for each sprint, release or feature accordingly.

➢ Agile thinking - A player has to make his move quickly when it is his turn, his
decision in the current betting round is dependent on the moves of opponents, the
community cards and the money left with him. If the previous player raises the bet
amount, the player can choose to fold the cards, choose to continue or even raise
the bet amount. A manager should be capable of making flexible decisions
depending on the changing requirements and should be able to solve a problem
quickly. These decisions must satisfy the optimal policy test for at least in the
medium term.

➢ Emotional Intelligence - Poker face is something that the Poker players use to hide
their exact emotions to deceive the opponents and it has become a quite popular
phrase. Managers can learn from this to control their emotions and have a graceful
attitude that leads to a healthy atmosphere in the workplace.

3. Planning Poker and Business Value Game

Planning Poker and Business Value Game/Poker are two estimation techniques used in an
agile software development environment. Planning Poker is used while estimating a user
story point for an upcoming sprint. The product owner will explain the user story to the
technical team which consists of developers and testers. The team members can get their
queries on the user story clarified during this meeting. Then the team members are asked
to estimate the user story in terms of the overall efforts that need to be put in to
implement the user story. Story points are relative estimations based on the complexity,
risks, uncertainty and duration and points are represented using the Fibonacci series.

In Planning Poker, a deck of cards with Fibonacci sequence numbers (0, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89) is given to all the team members and team members should pick the card

with the number equivalent to the story point and place the card face-down on the table.
All the team members will be asked to reveal their cards at the same time and then justify
their estimates. This is done to avoid anchoring that happens in the traditional way of
story point estimation where the estimations are said aloud[10].

Figure 1: Estimation said aloud leading to anchoring vs planning poker

Business Value Poker or Business Value Game is similar to Planning Poker, but in value
poker the relative value of a feature is estimated instead of the relative effort. This is a
time-boxed meeting involving the product management board i.e, the product owner and
all the stakeholders. Similar to Planning Poker, product owner will give an overview
about the feature to the stakeholders and the stakeholders can get their queries clarified.
The stakeholders will be given a deck of cards with the numbers 100, 200, 300, 500, 800,
1200, 2000 and 3000 and they have to estimate the value of the feature. Select the card
which denotes the estimated value and keep it face down. Everyone has to show their
cards simultaneously and then justify their estimations[11][12]. Both Planning Poker and
Business value Poker use decks of cards with certain values and showdown happens after
each round of estimation.

4. Poker Solvers and Poker Bots

Poker solvers are applications that help to find the optimal move for a given hand. These
programs are mainly used for poker training. Various input parameters like preflop ranges
of players, community cards, bet size, raise size, stack size and pot size have to be
entered and an optimal solution will be recommended by the solvers accordingly. Real
time assistance using a poker solver is not allowed in poker rooms or online poker[13].
Examples for Poker solvers are GTO+, Simple PostFlop and PioSolver.

Poker bots are computer programs that use artificial intelligence to play against human
poker players. From 2004, there were many competitions held between computer poker
programs and also between humans and bots. Libratus and Pluribus are examples of
poker bots which beat top professional poker players in two-player heads up no limit
Texas hold’em poker and six-player heads up no limit Texas hold’em poker respectively.
The core of solving a game is finding the optimal solution or equilibrium in the game. As
Poker is an imperfect information game it is difficult to find the optimal solution. The
methods like Bayes Theorem, Nash Equilibrium, Monte Carlo simulation, Neural
Networks etc have to be implemented to find the optimal solution[14]. Table1 summarizes
the five significant Poker Bots till date that were able to beat human professional Poker
players.

Pluribus Libratus DeepStack Cepheus Polaris

Year Of
Release

2019 2017 2016 2015 2008

Developed By Facebook's AI
Lab and
Carnegie
Mellon
University

Carnegie
Mellon
University

Charles
University,
The Czech
Technical
University,
University of
Alberta

University of
Alberta

University of
Alberta

Poker Variant No limit
Texas
Hold'em

Heads-up
no-limit Texas
Hold'em

Heads-up
no-limit Texas
Hold'em

Heads-up
limit Texas
Hold'em

Heads-up
Limit Texas
Hold'em

Equilibrium
Finding
Algorithm

Monte Carlo
CFR,
Linear CFR

Monte Carlo
CFR with RBP
(Regret Based
Pruning),
CFR+

Depth limited
continual
re-solving
using CFR-D,
Vanilla CFR,
CFR+

CFR+ CFR

Information
Set

After
abstraction 1012

After applying
depth-limit
1017

1014 1012

Computation
Nodes used
for solving

1 server, 64
core, 512 GB
local disk

196 nodes,
128GB RAM
per node, 28
core per node

200 nodes,
24 2.1GHz
core per
node, 32GB
RAM, 1TB

local disk.

Solving
Duration

12,400 CPU
core hours

25 million
CPU core
hours

~175 CPU
core years

900 CPU
core years

Table 1: Poker Bots Summary

Polaris is the first computer poker program to win a meaningful match against top
professional Poker players[15]. Cepheus is the first program to essentially weakly solve
heads-up limit Texas hold’em poker[16]. Deepstack is the first computer program to beat
professional players in heads-up no-limit Texas hold’em poker[17]. Libratus is another
poker program which plays the heads-up no-limit Texas hold’em poker and the first to
beat top poker human professionals[18]. The first bot to beat human players in a six-player
no-limit Texas hold’em poker competition is Pluribus[19].

5. Equilibrium finding Algorithms

As mentioned in Table 1, the equilibrium state of a game is calculated using different
algorithms. Choosing the right algorithm is dependent on the number of information sets
or the nodes in the game tree. Figure 2 is an illustration of translating two different hands
and actions of two players in the Kuhn Poker game into a game tree. Linear programming
can be used to find equilibrium for two player zero-sum imperfect information games
with around 108 nodes in the game tree. Algorithms like Counterfactual Regret
Minimization (CFR) and Excessive Gap Technique (EGT) can be used to find
equilibrium in large games (1014 nodes). Large games are converted into abstract games
i.e all possible paths in the game won't be considered for finding the equilibrium[20]. The
most common algorithm used to find the optimal solution in Poker is CFR and it’s
variants (refer Table 1).

CFR is an iterative algorithm which finds the optimal actions by playing against itself and
improves the outcome with each iteration. Regret is the difference between the payoff of
a possible action (for eg. in Poker, for the given hand a player can choose to fold or call
or raise the bet amount) and the payoff (player can lose, win or retain money) of the
action taken [21] ie.

regret = payoff(possible action) - payoff(action taken)

Figure 2: Kuhn Poker (3 card) game tree

The regret is calculated in each iteration of the game with different possible actions and at
the end of each iteration the player’s strategy is updated in such a way that the action with
the higher regret value gets the higher probability[19].

5.1. Applying CFR for 3x3 Tic-Tac-Toe using recursion

An article written by a reinforcement learning enthusiast has shared a Python program to
calculate the strategy for the 3x3 Tic-tac-toe game using CFR[22]. Tic-tac-toe is a two
player zero sum game which is usually played in 3x3 board, where each player has to put
the symbols like ‘X’ or ‘O’. The player who manages to put the symbol either
horizontally, vertically or diagonally in each consecutive cell wins the game. The game
could also end up in a tie, when both the players do not meet the winning criteria. The 3x3
tic-tac-toe game can have at most 39 = 19,683 states (total 9 cells in the board and 3 states
for each cell), among which some states could be invalid. Also, the maximum number of
games possible are 9! (362,880), however according to the sources; the exact number of
games depending on various other factors results in 26,830 possible games[23].

Figure 3: Output from the Python script

The program trains the algorithm to play tic-tac-toe for all valid information sets or the
states on the tic-tac-toe board using a recursive method and stores the strategy in a
dataset/dictionary. The program follows a top-down approach where the strategy is
calculated for each state of the game from the first move on the tic-tac-toe board followed
by the second move and so on. For each action/move on the tic-tac-toe board by the
player, the payoff/utility is calculated recursively. The next state of the game and the
probability of both the players taking that particular action is also passed to the function
inorder to find the utility for a move. Then regret for each action/move is calculated by
finding the difference between the utility calculated for the action in the previous iteration
and utility calculated in the current iteration.

5.2. Experiment 1: building a 3x3 Tic-Tac-Toe using CFR and iteration vs recursion

As a part of understanding and learning the CFR algorithm and its implementation in a
game, we also chose to solve the 3x3 Tic-tac-toe game using the CFR algorithm. In our
program, all the possible states on the 3x3 tic-tac-toe board for each player are validated
and the invalid states are removed. Then the utility/payoff for both player’s actions in all
the valid states are calculated and stored in an array, also the regret value for each action
in a state is calculated and stored in an array. The final strategy/policy to be taken in each
state on the tic-tac-toe board after the completion of the training/iterations is also stored in
an array. The algorithm has to refer to this array to make the optimal move for a state,
when the human player plays against the algorithm.

Formulaic view of gameplay using CFR, would look as follows:

Step1) σ𝑇(𝐼, 𝑎) = (𝑅𝑇−1(𝐼,𝑎))+

𝑏ϵ𝐴(𝐼)
∑ (𝑅𝑡−1(𝐼,𝑏))+

Step2) ∆𝑅𝑇(𝐼, 𝑎) = 𝑢
𝑇
(𝐼, 𝑎) −

𝑏ϵ𝐴(𝐼)
∑ σ𝑇(𝐼, 𝑏)𝑢

𝑇
(𝐼, 𝑏)

Where

 𝑢
𝑇
(𝐼, 𝑎) =

𝑏ϵ𝐴(𝐼)
∑ σ𝑇(𝐼', 𝑏)𝑢

𝑇
(𝐼', 𝑏)

In the above formula:
→ Number of iterations/training𝑇
→ Information States on the tic-tac-toe board𝐼
→ actions/moves available at state𝑎 𝐼
→ Next information state resulted from the move𝐼' 𝑎
→ actions/moves available at state𝑏 𝐼'

Using a recursive method to solve the games with a large number of information sets will
lead to more memory usage, insufficient RAM and slower execution[24]. This was
observed by us, for instance, in MATLAB where the entire stream of recursion appears as
a notification in the lower part of the edit screen - giving users an idea of how far the
recursion has to proceed before termination. So, we solved the 3x3 Tic-tac-toe using an
iterative method rather than a recursive method, and our code does not make use of each
player’s reach probability parameter to calculate the strategy. This was done in order to
improve the time taken for the training by the algorithm, and also to create a useful
codebase for the larger 5X5 TTT. The comparison of codes without using each player’s
reach probability parameter (step 3) and with using weighting parameter (step 4) can be
represented as below:

Step3) 𝑅𝑇(𝐼, 𝑎) =
𝑡=1

𝑇

∑ ∆𝑅𝑇(𝐼, 𝑎)

Step4) 𝑅𝑇(𝐼, 𝑎) =
𝑡=1

𝑇

∑ 𝑃(𝐼) ∆𝑅𝑇(𝐼, 𝑎)

The execution time required by our method to complete 50 iterations of training is
approximately 35 seconds (refer figure 4) and the execution time required by the method
mentioned in the related work (in section 5.1) to complete 50 iterations of training is
approximately 831 seconds (refer figure 3): a reduction of a factor of 20. The Matlab
script to solve the 3x3 Tic-tac-toe using CFR is uploaded in the repository[25].

Figure 4: Training start and end time of Matlab CFR script

5.3. Experiment 2: 3x3 Tic-tac-toe using CFR and divide-&-conquer

We tried to solve 3x3 Tic-tac-toe by dividing and assigning the computation job to eight
different ‘assistants’, which are in themselves computer programs. These assistants are
responsible for the computation of regret values of the information sets related to; H1,
H2, H3, V1, V2, V3, D1 and D2.

Here as shown in figure 3:
→ H1, H2, H3 are the three rows on the tic-tac-toe board
→ V1, V2, V3 are the three columns on the tic-tac-toe board
→ D1, D2 are the two diagonals on the tic-tac-toe board

For each move, the regret value is calculated by eight different assistants and the strategy
will be calculated based on the cumulative regret value calculated from the inputs of
these eight assistants. The move which has the highest regret value will be suggested as
the next optimal move.

This source code is uploaded in the repository[25], though we have implemented this
method to solve the 3x3 tic-tac-toe; we would call this a partially successful experiment

as there are discrepancies in the strategies suggested by this divide and conquer method
and the method implemented in section 5.2.

Figure 5: Eight assistants of 3x3 Tic-tac-toe divide and conquer method

For eg:

When the state on the tic-tac-toe board is “X - - - O - - - -” and it is Player 1’s turn to make
the next move this method of divide and conquer recommends the following strategy ie to
put the symbol in the 3rd cell:

“0 0 1 0 0 0 0 0 0”

Whereas the method mentioned in section 5.2 recommends the below strategy ie put the
symbol either on the 2nd cell or 4th cell:

“0 0.5000 0 0.5000 0 0 0 0 0”

5.4. Experiment 3: 3x3 Tic-tac-toe using CFR and pseudo- divide-&-conquer

In the experiments mentioned in the sections 5.2 and 5.3, the algorithm does the regret
and strategy calculation as a part of training and creates a dataset with the strategy for all
possible moves in the 3x3 tic-tac-toe game. The algorithm has to refer to this dataset and
return the strategy with maximum utility whenever a human plays against the algorithm.
But, in this method; each state of 3x3 tic-tac-toe game is divided into 8 subgames ie. I1,
I2, I3, I4, I5, I6, I7, I8 and the strategy is calculated in real time when the human player
makes a move. As a single move can change the states of multiple subgames (For eg:
putting the symbol ‘X’ on the first cell will affect the state of subgames I1, I4 and I7), the
strategy will be calculated for all the eight subgames and the strategy with the maximum

utility (i.e strategy with the minimum utility for the opponent) will be considered by the
algorithm as the next move.

Figure 6: Eight sub-games of 3x3 Tic-tac-toe pseudo divide and conquer method

Formulaic representation of pseudo divide and conquer method is as follows:

Step 1) σ
𝑡
𝑙(𝐼

𝑙
, 𝑎

𝑙
) =

(𝑅
𝑡−1
𝑙 (𝐼

𝑙
,𝑎

𝑙
))+

𝑏
𝑙
ϵ𝐴(𝐼

𝑙
)

∑ (𝑅
𝑡−1
𝑙 (𝐼

𝑙
,𝑏

𝑙
))+

Step 2) ∆𝑅
𝑡
𝑙(𝐼

𝑙
, 𝑎

𝑙
) = 𝑢

𝑡
𝑙(𝐼

𝑙
, 𝑎

𝑙
) −

𝑏
𝑙
ϵ𝐴(𝐼

𝑙
)

∑ σ
𝑡
𝑙(𝐼

𝑙
, 𝑏

𝑙
) 𝑢

𝑡
𝑙(𝐼

𝑙
, 𝑏

𝑙
)

Where

𝑢
𝑡
𝑙(𝐼

𝑙
, 𝑎

𝑙
) = 𝑚𝑖𝑛

 𝐼'
𝑚

 = 𝑆(𝐼
𝑚

,𝑎
𝑙
)

𝑏
𝑚

ϵ𝐴(𝐼'
𝑚

)
∑ σ

𝑡
𝑚(𝐼'

𝑚
, 𝑏

𝑚
)𝑢

𝑡
𝑚(𝐼'

𝑚
, 𝑏

𝑚
)

Step 3) 𝑅
𝑡
𝑙(𝐼

𝑙
, 𝑎

𝑙
) =

𝑡=1

𝑇

∑ ∆𝑅
𝑡
𝑙(𝐼

𝑙
, 𝑎

𝑙
)

Step 4) 𝐼
𝑙
* = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑚
𝑏

𝑚
ϵ𝐴(𝐼

𝑚
)

∑ σ
𝑇
𝑚(𝐼

𝑚
, 𝑏

𝑚
) 𝑢

𝑇
𝑚(𝐼

𝑚
, 𝑏

𝑚
)

Step 5) Thus is the maximum subgame strategy for a given stateσ
𝑇
* (𝐼

𝑙
*, 𝑏

𝑙
) 𝐼

In the above formula:

→ is state on the tic-tac-toe board, =1 to 8 subgames , is the action𝐼 𝑙 𝐼
𝑙{ } 𝑙=1

8 𝑎

→ is the number of iterations/training𝑇
→ are the subgame states affected by the action𝐼'

𝑚
𝑎

𝑙

→ is one of the𝐼
𝑙

𝐼
𝑚

→ is the subgame when action is taken by the player in the state𝐼
𝑙
* 𝑏 𝐼

6. Directions for future work: solving 5x5 Tic-tac-toe

Solving the 5x5 Tic-tac-toe, where the maximum number of states will be 325 - more than
847 Billion states using CFR is a tedious task, as we discovered for ourselves when we
engaged Amazon Web Services cloud computers to attempt to run the MATLAB code.
Iterating through this huge information set and finding an optimal move is constrained by
time and resources, we are recommending the following methods to solve the 5x5
Tic-tac-toe game using CFR:

Method 1

Instead of iterating through all possible states in the 5x5 tic-tac-toe board, solve only the
endgame states using the same method used in the source code mentioned in section 5.2.
For example, the endgame of 5x5 tic-tac-toe would look similar to a state represented in
Figure 4; where only two moves are left to finish the game. If we consider the state of
each cell in the 5x5 tic-tac-toe board as a bit; when combined it will form a 25 bit word.
Eg: XOOX-XXOXOOOOOXOOO-OXXXOO. In an endgame, these two blanks can be in
any two cells on the board and the number of all the possible combinations of
moves/states that leads to two blank cells on the board can be calculated using the
following formula[26][27]:

25! /(2! * 23!) * 23! /(12! * 11!) + 23! /(11! * 12!)

In the above formula:
➢ 25 is the total number of cells in the 5x5 tic-tac-toe board
➢ 2 is the number of blank cells in the endgame of 5x5 tic-tac-toe board
➢ 23 is the number of cells with symbols ‘X’ or ‘O’ in the endgame
➢ 12 and 11 are the number of symbols ‘X’ or ‘O’ in the endgame

Figure 7: A sample 5x5 tic-tac-toe endgame state

Method 2

Solving 5x5 tic-tac-toe using the divide and conquer method, similar to the method
mentioned in section 5.3. The number of assistants will be 12; for 5 rows, 5 columns and
2 diagonals.

Method 3

The pseudo divide and conquer method mentioned in section 5.4, where the game can be
divided into 12 subgames and the strategy can be calculated in the real time by finding
the least favorable move for the opponent/human player.

7. Conclusion

Games like Poker variants and tic-tac-toe can be solved programmatically using the
Counterfactual Regret Minimization algorithm. CFR algorithm can be implemented using
different intuitive modifications - even if one doesn’t employ heuristics - and this can lead
to the algorithm computing the regret values and strategies more efficiently.

Acknowledgement

We thank alumni of Indian Institute of Management Kozhikode; Mr. Arijit Goswami
(Business Development Manager, Capgemini) and Mr. Suresh Gutti (Consultant, Optum)
for their valuable inputs on Poker towards this paper.

References

[1] Perfect information. (2003, September 19). Wikipedia.
https://en.wikipedia.org/wiki/Perfect_information

[2] Holloway, D. (2016, July 31). Mind games - Strategic thinking in chess and poker.
LinkedIn.
https://www.linkedin.com/pulse/mind-games-strategic-thinking-chess-poker-daniel-hol
loway/

[3] Billings, D. (1995, August 30). Computer Poker. ERA:Education and Research
Archive.
https://era.library.ualberta.ca/items/a92e1a72-bf40-4ae8-b3fb-eb34723367be/view/535
9642b-2e6d-43d3-81dc-9f36c321f752/TR95-22.pdf

[4] Backward induction. (2005, June 17). Wikipedia.
https://en.wikipedia.org/wiki/Backward_induction

[5] Cepheus (poker bot). (2015, January 17). Wikipedia.
https://en.wikipedia.org/wiki/Cepheus_(poker_bot)

[6] Pluribus (poker bot). (2019, November 27). Wikipedia.
https://en.wikipedia.org/wiki/Pluribus_(poker_bot)

[7] Chu, B. (2016, January 3). Product management is a lot like playing poker. Medium.
https://medium.com/@brandonmchu/product-management-is-a-lot-like-playing-poker-
a1f3b00dcbe

[8] Nanji, L. (2018, June 5). How poker helps you win at product management. Medium.
https://medium.com/product-to-product/how-poker-helps-you-win-at-product-manage
ment-7cde2521050d

[9] What the art of poker can teach us about business management. (2020, March 27).
BOSS Magazine. https://thebossmagazine.com/poker-business-management/

[10] Planning poker. (2007, June 27). Wikipedia.
https://en.wikipedia.org/wiki/Planning_poker

[11] Dahlgren, M. (2017, April 3). Determining value using value poker. Medium.
https://medium.com/@MagnusDahlgren/determining-value-using-value-poker-980cb2
a1e432

[12] Business value game. (2021, July 6). agile42.
https://www.agile42.com/en/agile-community/agile-info-center/business-value-game/

[13] What is real-time assistance (RTA)? Is it legal? (2020, October 2). PokerNews.
https://www.pokernews.com/news/2020/10/what-is-meant-by-real-time-assistance-rta-
38054.htm

https://en.wikipedia.org/wiki/Perfect_information
https://www.linkedin.com/pulse/mind-games-strategic-thinking-chess-poker-daniel-holloway/
https://www.linkedin.com/pulse/mind-games-strategic-thinking-chess-poker-daniel-holloway/
https://era.library.ualberta.ca/items/a92e1a72-bf40-4ae8-b3fb-eb34723367be/view/5359642b-2e6d-43d3-81dc-9f36c321f752/TR95-22.pdf
https://era.library.ualberta.ca/items/a92e1a72-bf40-4ae8-b3fb-eb34723367be/view/5359642b-2e6d-43d3-81dc-9f36c321f752/TR95-22.pdf
https://en.wikipedia.org/wiki/Backward_induction
https://en.wikipedia.org/wiki/Cepheus_(poker_bot)
https://en.wikipedia.org/wiki/Pluribus_(poker_bot)
https://medium.com/@brandonmchu/product-management-is-a-lot-like-playing-poker-a1f3b00dcbe
https://medium.com/@brandonmchu/product-management-is-a-lot-like-playing-poker-a1f3b00dcbe
https://medium.com/product-to-product/how-poker-helps-you-win-at-product-management-7cde2521050d
https://medium.com/product-to-product/how-poker-helps-you-win-at-product-management-7cde2521050d
https://thebossmagazine.com/poker-business-management/
https://en.wikipedia.org/wiki/Planning_poker
https://medium.com/@MagnusDahlgren/determining-value-using-value-poker-980cb2a1e432
https://medium.com/@MagnusDahlgren/determining-value-using-value-poker-980cb2a1e432
https://www.agile42.com/en/agile-community/agile-info-center/business-value-game/
https://www.pokernews.com/news/2020/10/what-is-meant-by-real-time-assistance-rta-38054.htm
https://www.pokernews.com/news/2020/10/what-is-meant-by-real-time-assistance-rta-38054.htm

[14] Computer poker player. (2004, March 3). Wikipedia.
https://en.wikipedia.org/wiki/Computer_poker_player

[15] Bowling, M. et al. (2009, May). A Demonstration of the Polaris Poker System.
CiteSeerX.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.6204&rep=rep1&type
=pdf

[16] Bowling, M., Burch, N., Johanson, M., & Tammelin, O. (2017). Heads-up limit
hold'em poker is solved. Communications of the ACM, 60(11), 81-88.
https://doi.org/10.1145/3131284

[17] Moravčík, M., et al. (2017). DeepStack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337), 508-513.
https://doi.org/10.1126/science.aam6960

[18] Brown, N., & Sandholm, T. (2017). Libratus: The superhuman AI for no-limit
poker. Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence. https://doi.org/10.24963/ijcai.2017/772

[19] Brown, N., & Sandholm, T. (2019). Superhuman AI for multiplayer poker. Science,
365(6456), 885-890. https://doi.org/10.1126/science.aay2400

[20] Ganzfried, S., & Sandholm, T. (2015, May 4). Endgame Solving in Large
Imperfect-Information Games. In the International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS).
https://www.cs.cmu.edu/~sandholm/endgame.aamas15.fromACM.pdf

[21] SALLOUM, Z. (2020, May 24). Introduction to regret in reinforcement learning.
Medium.
https://towardsdatascience.com/introduction-to-regret-in-reinforcement-learning-f5b4a
28953cd

[22] SALLOUM, Z. (2020, December 28). Counterfactual regret minimization.
Medium.
https://towardsdatascience.com/counterfactual-regret-minimization-ff4204bf4205

[23] Game complexity. (2003, September 13). Wikipedia.
https://en.wikipedia.org/wiki/Game_complexity

[24] Dale, W. (2018, May 9). Recursion: The pros and cons. Medium.
https://medium.com/@williambdale/recursion-the-pros-and-cons-76d32d75973a

[25] https://github.com/lijachandran/3x3Tic-Tac-Toe_with_CFR
[26] How many bit strings of length 8 contain exactly 4 zeros? (2018, May 6). Quora.

https://www.quora.com/How-many-bit-strings-of-length-8-contain-exactly-4-zeros
[27] Combination. (2001, July 26). Wikipedia.

https://en.wikipedia.org/wiki/Combination

https://en.wikipedia.org/wiki/Computer_poker_player
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.6204&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.6204&rep=rep1&type=pdf
https://doi.org/10.1145/3131284
https://doi.org/10.1126/science.aam6960
https://doi.org/10.24963/ijcai.2017/772
https://doi.org/10.1126/science.aay2400
https://www.cs.cmu.edu/~sandholm/endgame.aamas15.fromACM.pdf
https://towardsdatascience.com/introduction-to-regret-in-reinforcement-learning-f5b4a28953cd
https://towardsdatascience.com/introduction-to-regret-in-reinforcement-learning-f5b4a28953cd
https://towardsdatascience.com/counterfactual-regret-minimization-ff4204bf4205
https://en.wikipedia.org/wiki/Game_complexity
https://github.com/lijachandran/3x3Tic-Tac-Toe_with_CFR
https://www.quora.com/How-many-bit-strings-of-length-8-contain-exactly-4-zeros
https://en.wikipedia.org/wiki/Combination

Research Office

Indian Institute of Management Kozhikode

IIMK Campus P. O.,

Kozhikode, Kerala, India,

PIN - 673 570

Phone: +91-495-2809237/ 238

Email: research@iimk.ac.in

Web: https://iimk.ac.in/faculty/publicationmenu.php

	Sample working paper.pdf
	293 June Fullpaper.pdf
	Binder1
	WP front page
	LSPI_For_SPSAMDPs

	WP Back page

	Venkataraman-Stakeholder Approach to CS-WP01-18-19-Mar19.pdf
	Sample working paper.pdf
	293 June Fullpaper.pdf
	Binder1
	WP front page
	LSPI_For_SPSAMDPs

	WP Back page

	Sample working paper.pdf
	293 June Fullpaper.pdf
	Binder1
	WP front page
	LSPI_For_SPSAMDPs

	WP Back page

